摘要:
A patterning method of the present invention is described as follows. A mask layer and a patterned photoresist layer are formed on a target layer in sequence, wherein an etching rate of the mask layer is different from an etching rate of the target layer. A plurality of spacers is formed on sidewalls of the patterned photoresist layer respectively, wherein an etching rate of the spacers is different from the etching rate of the mask layer. The patterned photoresist layer is removed to form an opening between any two adjacent spacers. A portion of the mask layer is removed by using the spacers as a mask so as to form a patterned mask layer. A portion of the target layer is removed by using the patterned mask layer as a mask.
摘要:
A method for forming contact openings is provided. First, a semiconductor device is formed on a substrate. Next, an etching stop layer, a first dielectric layer and a patterned photoresist layer are sequentially formed on the substrate. Next a portion of the first dielectric layer and a portion of the etching stop layer are removed to form an opening, wherein the portion of the first dielectric layer and the portion of the etching stop layer are not covered by the patterned photoresist layer. Next, the patterned photoresist layer is removed. Next, an over etching process is performed to remove the etching stop layer at a bottom of the opening and expose the semiconductor device in a nitrogen-free environment. The reactant gas of the over etching process includes fluorine-containing hydrocarbons, hydrogen gas and argon gas.
摘要:
First, a semiconductor substrate having a first active region and a second active region is provided. The first active region includes a first transistor and the second active region includes a second transistor. A first etching stop layer, a stress layer, and a second etching stop layer are disposed on the first transistor, the second transistor and the isolation structure. A first etching process is performed by using a patterned photoresist disposed on the first active region as a mask to remove the second etching stop layer and a portion of the stress layer from the second active region. The patterned photoresist is removed, and a second etching process is performed by using the second etching stop layer of the first active region as a mask to remove the remaining stress layer and a portion of the first etching stop layer from the second active region.
摘要:
A strained-silicon CMOS transistor includes: a semiconductor substrate having a first active region, a second active region, and an isolation structure disposed between the first active region and the second active region; a first transistor, disposed on the first active region; a second transistor, disposed on the second active region; a first etching stop layer, disposed on the first transistor and the second transistor; a first stress layer, disposed on the first transistor; a second etching stop layer, disposed on the first transistor and the first stress layer, wherein an edge of the first stress layer is aligned with that of the second etching stop layer; a second stress layer, disposed on the second transistor; and a third etching stop layer disposed on the second transistor and the second stress layer, wherein an edge of the second stress layer is aligned with that of the third etching stop layer.
摘要:
A method for controlling an ADI-AEI CD difference ratio of openings having different sizes is described. The openings are formed through a silicon-containing material layer, an etching resistive layer and a target material layer in turn. Before the opening etching steps, at least one of the opening patterns in the photoresist mask is altered in size through photoresist trimming or deposition of a substantially conformal polymer layer. A first etching step forming thicker polymer on the sidewall of the wider opening pattern is performed to form a patterned Si-containing material layer. A second etching step is performed to remove exposed portions of the etching resistive layer and the target material layer. At least one parameter among the parameters of the photoresist trimming or polymer layer deposition step and the etching parameters of the first etching step is controlled to obtain a predetermined ADI-AEI CD difference ratio.
摘要:
A cleaning method following an opening etching is provided. First, a semiconductor substrate having a dielectric layer is provided. The hard mask layer includes at least a metal layer. The opening etch is then carried out to form at least an opening in the dielectric layer. A nitrogen (N2) treatment process is performed to clean polymer residues having carbon-fluorine (C—F) bonds remained in the opening. Finally, a wet cleaning process is performed.
摘要:
A method of removing a spacer, a method of manufacturing a metal-oxide-semiconductor transistor device, and a metal-oxide-semiconductor transistor device, in which, before the spacer is removed, a protective layer is deposited on a spacer and on a material layer (such as a salicide layer) formed on the source/drain region and a gate electrode, such that the thickness of the protective layer on the spacer is smaller than the thickness on the material layer, and thereafter, the protective layer is partially removed such that the thickness of the protective layer on the spacer is approximately zero and a portion of the protective layer is remained on the material layer. Accordingly, when the spacer is removed, the material layer may be protected by the protective layer.
摘要:
Automatic process control of after-etch-inspection critical dimension. A dielectric layer is deposited over a substrate and is then planarized to a first thickness. A cap oxide layer having a second thickness is deposited, wherein the combination of the first thickness and the second thickness is substantially constant. An ADI CD of a contact hole to be formed on the substrate is altered and pre-determined based on the second thickness of the cap oxide layer. A photoresist layer is formed on the cap oxide layer. An opening having the predetermined ADI CD is formed in the photoresist layer. Using the photoresist layer as an etching mask, the cap oxide layer and the dielectric layer is etched through the opening to form a contact hole having an AEI CD.
摘要:
Automatic process control of after-etch-inspection critical dimension. A dielectric layer is deposited over a substrate and is then planarized to a first thickness. A cap oxide layer having a second thickness is deposited, wherein the combination of the first thickness and the second thickness is substantially constant. An ADI CD of a contact hole to be formed on the substrate is altered and pre-determined based on the second thickness of the cap oxide layer. A photoresist layer is formed on the cap oxide layer. An opening having the predetermined ADI CD is formed in the photoresist layer. Using the photoresist layer as an etching mask, the cap oxide layer and the dielectric layer is etched through the opening to form a contact hole having an AEI CD.
摘要:
A manufacturing method of a semiconductor device is disclosed in the present invention. First, at least one gate structure and plurality of source/drain regions on a substrate are formed, a dielectric layer is then formed on the substrate, a first contact hole and a second contact hole are formed in the dielectric layer, respectively on the gate structure and the source/drain region, and a third contact hole is formed in the dielectric layer, wherein the third contact hole overlaps the first contact hole and the second contact hole.