Abstract:
Dialysis treatment devices and methods for removing urea from dialysis waste streams are provided. In a general embodiment, the present disclosure provides a dialysis treatment device including: 1) a first filter having a filtration membrane, 2) a urea removal unit having urease and in fluid communication with the first filter, and 3) a second filter having an ion rejection membrane and in fluid communication with the first filter and the urea removal unit.
Abstract:
A method of predicting serum phosphorus concentrations in a patient during hemodialysis includes measuring serum phosphorus concentrations of the patient over a hemodialysis treatment session time and an ultrafiltration rate calculated by a difference between pre- and post-dialytic body weight of the patient during an initial hemodialysis treatment session divided by a total treatment time of the treatment session and estimating a phosphorous mobilization clearance and a pre-dialysis distribution volume of phosphorus for the patient. Serum phosphorus concentrations of the patient can then be predicted at any time during any hemodialysis treatment session with the estimated phosphorous mobilization clearance and pre-dialysis distribution volume of phosphorus of the patient.
Abstract:
A method of predicting serum phosphorus concentrations in a patient during hemodialysis includes measuring serum phosphorus concentrations of the patient over a hemodialysis treatment session time and an ultrafiltration rate calculated by a difference between pre- and post-dialytic body weight of the patient during an initial hemodialysis treatment session divided by a total treatment time of the treatment session and estimating a phosphorous mobilization clearance and a pre-dialysis distribution volume of phosphorus for the patient. Serum phosphorus concentrations of the patient can then be predicted at any time during any hemodialysis treatment session with the estimated phosphorous mobilization clearance and pre-dialysis distribution volume of phosphorus of the patient.
Abstract:
A simplified peritoneal equilibration test (S-PET) is disclosed. Instead of a lengthy peritoneal equilibration test (PET), the simplified procedure requires no blood sample and may use data from as few as two or three samples to classify a peritoneal membrane of a user. Typically, a peritoneal membrane or peritoneum of a dialysis patient, or other person, is classed as a high transport membrane, high-average transport membrane, a low-average transport membrane or a low transporter membrane. The S-PET may be performed at home by a user without the need to submit a blood sample. Kits for analyzing the samples may be furnished for home use. The kits may use disposable strips, microfluidic analyzers or chemical reagents, or may alternatively include reusable analysis equipment, such as optical or conductivity analysis equipment.
Abstract:
Dialysis treatment devices and methods for removing urea from dialysis waste streams are provided. In a general embodiment, the present disclosure provides a dialysis treatment device including: 1) a first filter having a filtration membrane, 2) a urea removal unit having urease and in fluid communication with the first filter, and 3) a second filter having an ion rejection membrane and in fluid communication with the first filter and the urea removal unit.
Abstract:
A method of modeling a patient's peritoneal dialysis drain phase includes (i) modeling a first segment of a drain phase curve as having a constant flowrate; (ii) modeling a second segment of a drain phase curve as having a decaying exponential flowrate; and (iii) incorporating a switching component into the first and second components so that (a) at a first time the first segment is active and while the second segment is inactive and (b) at a second time the first segment is inactive and while the second segment is active.
Abstract:
Transfer sets are disclosed in the present patent. The transfer set provides a connection between a source of peritoneal dialysis fluid and a patient for whom peritoneal dialysis has been prescribed. The transfer sets disclosed herein are smaller and provide a more compact and convenient device by which a dialysis patient controls the flow of dialysis fluid to and from the peritoneum of the patient. The devices are more compact and convenient because they include more convenient mechanisms for starting and stopping flow of the dialysis fluid. It is also easy to determine whether the mechanism is in a closed or open configuration by simply looking at the mechanism.
Abstract:
A system and method for automatically adjusting a Continuous Cycling Peritoneal Dialysis (“CCPD”) therapy to minimize the potential for excess intra-peritoneal volume. The adjustments are made at the end of the drain, just prior to the next fill. The adjustments short the next fill, if necessary, to limit the intra-peritoneal volume, add a cycle, if necessary, to use all of the available dialysis solution and will average the remaining dwell time to maximize the therapeutic benefit of the therapy in the allotted time. In another embodiment, a tidal therapy using trended patient UF data is provided.
Abstract:
A medical fluid or dialysis system includes an auto-connection mechanism that connects connectors from the supply bags to dialysis cassette ports or cassette supply lines. The system provides for multiple, e.g., four, supply bags, which can be connected to a manifold of the auto-connection mechanism. Tip protecting caps that protect the supply line ends and cassette ports or cassette supply line ends are made to be compatible with the auto-connection mechanism. The auto-connection mechanism removes all the caps and connects the supply lines to the cassette. At least one roller occluder is provided that occludes the supply tubing prior to the tip protecting caps being removed. The roller occludes prevent medical dialysis fluid from spilling out of the supply lines between the time that the caps are removed and connection to the cassette is made.
Abstract:
Dialysis is enhanced by using nanoclay sorbents to better absorb body wastes in a flow-through system. Nanoclay sorbents, using montmorillonite, bentonite, and other clays, absorb significantly more ammonium, phosphate, and creatinine, and the like, than conventional sorbents. The clays may be used in wearable systems, such as a wearable peritoneal dialysis system, in which the dialysis fluid is circulated through a filter with nanoclay sorbents. Waste products are absorbed by the nanoclays and the dialysis fluid is recycled to the patient's peritoneum. Using the ion-exchange capability of the nanoclays, waste ions in the dialysis fluid are replaced with desirable ions, such as calcium, magnesium, and bicarbonate. The nanoclay sorbents are also useful for refreshing dialysis fluid used in hemodialysis and thus reducing the quantity of dialysis fluid needed for hemodialysis.