Abstract:
Disclosed is an optical fibre birefringence compensation mirror. Also disclosed is a current sensor wherein vibration resistance has been increased due to the optical connection of the optical fibre birefringence compensation mirror. The optical fibre birefringence compensation mirror includes: an optical fibre, a birefringence element, a lens, a magnet, a Faraday rotator, and a mirror. From the light incidence/emission end surface of the optical fibre, the birefringence element, Faraday rotator, and mirror are arranged in said order. Light comes in from the optical fibre, and is separated into two linearly polarised lights by the birefringence element. The polarisation planes of the two linearly polarised lights are rotated by the Faraday rotator, and the two linearly polarised lights are point-symmetrically reflected at one point by the mirror, then again rotated by the Faraday rotator, then re-combined into one light by the birefringence element and made to enter the optical fibre.
Abstract:
Provided is a reflective optical circulator capable of improving characteristics by preventing the occurrence of PDL and non-uniformity of insertion losses of reciprocating optical paths. The reflective optical circulator includes: an optical element unit having a first polarization separating element, a 45° non-reciprocal polarization plane rotating element, a phase element for rotating a polarization plane of an incident light by 90°, and a second polarization separating element; a light incidence/emission unit; a lens; and a reflector. All waveguides are disposed at an equivalent distance from a central point, and a shift amount of an extraordinary ray in the second polarization separating element is set to be larger than a shift amount of an extraordinary ray in the first polarization separating element. In addition, the phase element is constructed with two phase optical elements, and only one polarization component is allowed to transmit through the two phase optical elements.
Abstract:
A suspension structure is provided having a shock absorber for dampening the vibration from a wheel and a stabilizer for suppressing the up and down strokes in opposite phases generated from opposing wheels on a vehicle. The end portion of the stabilizer is connected to the lower end portion of the shock absorber.
Abstract:
A semiconductor integrated circuit design method is a method for designing a semiconductor integrated circuit having a main circuit as well as the spare cell including a scan flip-flop. In the method, a net list is received, which indicates a connection relationship among circuits and their positions in a semiconductor integrated circuit. An observation point is provided in the main circuit shown in the received net list, and then an observation net list in which the observation point is provided, is created. Thereafter, the observation point is associated with a spare cell placed in the neighborhood of the observation point based on the created observation net list. A scan net list is created, in which the observation point and the scan flip-flop included in the spare cell associated with the observation point are connected to each other by wiring.
Abstract:
A semiconductor integrated circuit design method is a method for designing a semiconductor integrated circuit having a main circuit as well as the spare cell including a scan flip-flop. In the method, a net list is received, which indicates a connection relationship among circuits and their positions in a semiconductor integrated circuit. An observation point is provided in the main circuit shown in the received net list, and then an observation net list in which the observation point is provided, is created. Thereafter, the observation point is associated with a spare cell placed in the neighborhood of the observation point based on the created observation net list. A scan net list is created, in which the observation point and the scan flip-flop included in the spare cell associated with the observation point are connected to each other by wiring.
Abstract:
A current measuring apparatus comprises a current detection unit 10 and a photoelectric converter 20. The current detection unit 10 comprises an optical fiber sensor 11 extended or looped around a conductor 30. A reflective film 12 is attached to one end of the sensor 11 so that light can be reflected by the end of the sensor. The current detection unit 10 further comprises a first Faraday element 13, a light-transmitting birefringent member 14, a first optical fiber 15, a second optical fiber 16 and a lens 17. The Faraday element 13 rotates a plane of polarization of the incident light through about 22.5°. The birefringent member 14 functions to separate the light emitted from the sensor 11 into an ordinary ray L1 and an extraordinary ray L2 that are orthogonal to each other, and to transmit linearly polarized light L0 emitted from a light source. The lens 17 is provided between the element 13 and the birefringent member 14. Focal points of the lens are formed at core portions of an input end 11a of the sensor 11 and an end face 15a of the first optical fiber 15. With this arrangement, the number of components is reduced and the apparatus is reduced in size.
Abstract:
An aluminum-based metal link including a shaft portion extending along a first axis, a bushing mount portion having a second axis perpendicular to the first axis, and a weld joint portion in which one of the opposed axial end portions of the shaft portion and the bushing mount portion are welded together by friction stir welding (FSW). The weld joint portion has a hole that has a third axis angularly offset from the second axis about the first axis and is formed upon termination of the FSW.
Abstract:
The front portion of a roof panel has left-hand and right-hand roof opening sections, each roof opening section being wide open without a roof side rail on its transversely outer side. A movable roof member is mounted on the roof opening sections so as to be movable longitudinally through a base frame fixed to the body of a vehicle, thereby opening the roof opening sections when the movable roof member is moved in its rear position and closing it when it is moved in its front position. The base frame contains a front section to be mounted to a front header of the body, a rear section to be mounted to a front edge portion of a rear roof panel section, a middle section for connecting middle portions of the front section and the rear section, and a guide section extending rearward from a transversely outer side portion of the rear section. The base frame is fixed to the body in such a state that the portions of the base frame or the body where the alignment position is likely to deviate from its normal position are aligned with an aligning jig or the movable roof member. Further, an alignment section or member is formed each on the body side and the base frame side so as to assume a normal positional relationship.
Abstract:
In optical isolators composed of a polarizer, an analyzer, a Faraday rotator and permanent magnet for magnetizing the Faraday rotator for the Faraday effect, this invention enables controlling of the maximum isolation temperature in the 0.degree. to 70.degree. C. temperature range. When assembling the device at room temperature, the Faraday rotator's wavelength-dependence characteristics are used for this purpose. By varying the wavelength during the assembly and adjustment process by .DELTA..lambda. from the wavelength at the device will be used, it is possible to set the temperature at which maximum isolation will be realized.