摘要:
An actual maximum fuel injection rate is computed based on a falling waveform and a rising waveform of the fuel pressure. The falling waveform represents the fuel pressure detected by a fuel sensor during a period in which the fuel pressure increases due to a fuel injection rate decrease. The rising waveform represents the fuel pressure detected by the fuel sensor during a period in which the fuel pressure decreases due to a fuel injection rate increase. The falling waveform and the rising waveform are modeled by modeling functions. A reference pressure is computed based on pressure during a specified time period before the falling waveform is generated. An intersection pressure is computed, at which the straight lines expressed by the modeling functions intersect to each other. The maximum fuel injection rate is computed based on a fuel pressure drop from the reference pressure to the intersection pressure.
摘要:
A fuel injection device includes a fuel injection valve for injecting fuel, which is distributed from a pressure-accumulation vessel. A pressure sensor is located in a fuel passage, which extends from the pressure-accumulation vessel to a nozzle hole. The pressure sensor is located closer to the nozzle hole than the pressure-accumulation vessel. A storage unit stores individual difference information obtained by an examination. The individual difference information indicates an injection characteristic of the fuel injection valve and indicates at least one of an injection response time delay between an injection start point and a time point, at which a fluctuation is caused by the start of fuel injection in detected pressure of the pressure sensor, and a parameter for calculating the injection response time delay.
摘要:
A learning device changes each of multiple parameters to an increased side and to a decreased side with respect to a reference value set for each of the multiple parameters. The learning device calculates an approximation degree for each combination of the changes of the multiple parameters. The learning device performs update by using the combination of the changes providing the highest approximation degree among the approximation degrees as the combination of the updated reference values when an update end condition is not satisfied. The update end condition is a condition that the approximation degree at the reference values is higher than any of the approximation degrees after the change. The learning device decides the reference values as learning values of the multiple parameters when the update end condition is satisfied.
摘要:
A variation waveform of fuel pressure is obtained by use of a fuel pressure sensor which detects pressure of fuel supplied to an injector. A quantity of fuel supplied to the injector is estimated based on a waveform of the detected pressure that is greater than a reference value due to a fuel pumping, in the obtained variation waveform. Especially, in a case that the fuel pressure sensor is provided to each of a plurality of injectors, it is desirable to obtain the variation waveform based on the output of the fuel pressure sensor provided to a cylinder in which no fuel injection is currently performed.
摘要:
A fuel injection control device (ECU) for controlling injection supply of fuel to a target engine includes a program for sequentially sensing fuel pressure fluctuating with injection of a predetermined injector of each cylinder of a multi-cylinder engine based on an output of a fuel pressure sensor, a program for detecting a diagram as a profile of a transition of a fuel quantity injected from the injector per unit time (i.e., an injection rate) at a present time based on the sequentially sensed fuel pressure transition, and a program for varying an injection command to the injector based on the diagram that is the profile of the injection rate transition and that is detected by the latter program and a predetermined basic diagram such that the diagram as the actual profile of the injection rate transition belongs to the basic diagram.
摘要:
A fuel temperature sensing device has fuel temperature sensors provided to respective cylinders for sensing fuel temperature. Each fuel temperature sensor is arranged in a position closer to an injection hole than to a pressure accumulator in a fuel passage extending from the pressure accumulator to the injection hole. The device has an average value calculating section for calculating an average value of fuel temperature sensing values sensed with the fuel temperature sensors of the respective cylinders. The device has a deviation calculating section for calculating deviations between the average value and the fuel temperature sensing values of the respective fuel temperature sensors. The device has a correcting section for correcting the fuel temperature sensing value of each fuel temperature sensor to approximate the deviation to zero for each fuel temperature sensor.
摘要:
An actual maximum fuel injection rate is computed based on a falling waveform and a rising waveform of the fuel pressure. The falling waveform represents the fuel pressure detected by a fuel sensor during a period in which the fuel pressure increases due to a fuel injection rate decrease. The rising waveform represents the fuel pressure detected by the fuel sensor during a period in which the fuel pressure decreases due to a fuel injection rate increase. The falling waveform and the rising waveform are modeled by modeling functions. A reference pressure is computed based on pressure during a specified time period before the falling waveform is generated. An intersection pressure is computed, at which the straight lines expressed by the modeling functions intersect to each other. The maximum fuel injection rate is computed based on a fuel pressure drop from the reference pressure to the intersection pressure.
摘要:
An intake air quantity correcting device calculates an intake air quantity as a sensing target of an airflow meter (an intake air quantity sensor) based on an injection quantity sensing value sensed with a fuel pressure sensor (an injection quantity sensor) and an oxygen concentration sensing value sensed with an A/F sensor (an oxygen concentration sensor). The intake air quantity correcting device regards a difference between the intake air quantity calculation value calculated in this way and an intake air quantity sensing value sensed with the airflow meter as a sensing error of the airflow meter and corrects the intake air quantity sensing value of the airflow meter based on the sensing error.
摘要:
A fuel injection system designed to execute a learning operation to spray fuel through a fuel injector in a cycle to calculate an average of actual injection quantities for correcting an injection duration so as to minimize a deviation of the average from a target quantity. The system samples the actual injection quantities for a given period of time made up of a first and a second time section. In each of the first and second time sections, the system decides whether each of the actual injection quantities is suitable for use in calculating the average or not. When a desired number of the actual injection quantities decided to be suitable for the calculation of the average has been derived in the first time section, the system proceeds to the second time section to calculate the average. This enhances the accuracy in determining the quantity of fuel actually sprayed from the fuel injector.
摘要:
A variation waveform of fuel pressure is obtained by use of a fuel pressure sensor which detects pressure of fuel supplied to an injector. A quantity of fuel supplied to the injector is estimated based on a waveform of the detected pressure that is greater than a reference value due to a fuel pumping, in the obtained variation waveform. Especially, in a case that the fuel pressure sensor is provided to each of a plurality of injectors, it is desirable to obtain the variation waveform based on the output of the fuel pressure sensor provided to a cylinder in which no fuel injection is currently performed.