Abstract:
The present invention provides a windowpane defogging device for a motor vehicle which, upon generation of a fog on a windowpane, comes into a defogging mode to remove the fog generated on the windowpane. The windowpane defogging device includes a relative humidity detecting unit configured to detect a windowpane relative humidity of a driver seat view field region of the windowpane and a windowpane relative humidity of a passenger seat view field region of the windowpane, and a control unit configured to control entry into the defogging mode by determining the generation or non-generation of the fog on the windowpane based on the windowpane relative humidity of the driver seat view field region and the windowpane relative humidity of the passenger seat view field region inputted from the relative humidity detecting unit.
Abstract:
A system and a method for mixing cabin and outside air of a vehicle air-conditioner may include a housing having cabin and outside air inlets for ventilating the cabin and outside air, a first door part to selectively cover at least a portion of the cabin air inlet and/or a portion of the outside air inlet to adjust an open value of each of the inlets, a second door part to selectively cover the remaining portion of the outside air inlet to adjust the open value of the outside air inlet, a cam part rotatable in the housing and formed with first and second slots to which the first and second door parts are slidably coupled such that rotation angle of the first or the second door part is varied according to rotation of the cam part, and a controlling unit controlling the rotation of the cam part.
Abstract:
Provided is a cold storage heat exchanger, and more particularly, a cold storage heat exchanger capable of increasing cooling comfort for a user and minimizing energy and time consumed upon performing a re-cooling by discharging cooled air stored in a cold storage tube upon operating an air conditioner of a vehicle even in the case in which an engine is stopped because the cold storage tube is provided between refrigerant tubes in an evaporator used in an air conditioner apparatus of the vehicle to thereby prevent a rapid increase in an interior temperature of the vehicle.
Abstract:
Disclosed herein is an air blower for a fuel cell vehicle using bearings. The air blower may include a volute casing, an impeller configured to include a hub and a plurality of wings formed on the outer circumferential surface of the hub and to compress air within the volute casing, a motor casing connected to the volute casing, and a motor configured to include a stator, a rotary shaft lengthily formed to penetrate the stator and configured to have a first side connected to the impeller, a rotator formed on the outer circumferential surface of the rotary shaft, a first bearing provided on the first side of the rotary shaft connected to the impeller, and a second bearing provided on a second side of the rotary shaft.
Abstract:
Provided is a cold-storage heat exchanger. The cold-storage heat exchanger includes a pair of header tanks, and tubes which are arranged in three rows with respect to the direction of the flow of air and connected at opposite sides thereof to the header tanks. A cold-storage medium is stored in the tubes that are disposed in a middle row, and refrigerant circulates through the tubes that are disposed in front and rear rows. Therefore, the cold-storage medium can effectively store cold-energy transferred from the refrigerant. When the engine of a vehicle is stopping, the cold-storage heat exchanger can discharge the cold-energy that has been stored into the passenger compartment of the vehicle, thus preventing the temperature in the passenger compartment from rapidly increasing, thereby creating pleasant air-conditioned conditions for a user, and minimizing the energy and time required to re-cool the passenger compartment.
Abstract:
A dual type air conditioning control system of a vehicle has a front-seat air conditioner for air-conditioning of a front-seat space and a rear-seat air conditioner for air-conditioning of a rear-seat space of the vehicle. The system includes a front-seat controller configured to control an operation and an output of the front-seat air conditioner, and to calculate a control target value for controlling an output of the rear-seat conditioner. The rear-seat controller is configured to receive the calculated control target value transmitted from the front-seat controller and to control the output of the rear-seat air conditioner based on the transmitted control target value.