Abstract:
The present invention includes an imageable element, which can be: (a) an imageable element comprising an imaging layer which comprises: an aromatic diazonium salt containing compound having an alkoxy substituent and an aromatic diazonium salt containing compound free of an alkoxy substituent; a polyvinyl acetal binder; and a sheet substrate; or (b) an imageable element comprising an imaging layer which comprises: an aromatic diazonium salt containing compound having an alkoxy substituent and an aromatic diazonium salt containing compound free of an alkoxy substituent; and a sheet substrate. The imaging layer includes a total aromatic diazonium salt containing compound content of at least 10 weight percent. The molar ratio of the aromatic diazonium salt containing compound having an alkoxy substituent to the aromatic diazonium salt containing compound that is free of an alkoxy substituent is from about 1.0:1 to 70:1. Upon imagewise exposure and development, an imaged element is obtained.
Abstract:
A method to reduce effluence during or immediately after imaging of a printing plate is described. In one embodiment of the invention, the method comprises: (a) applying to a substrate a coating composition comprising a photothermal converter and at least one polymer comprising thiosulfate groups to obtain a coating; and (b) applying a water soluble topcoat to the coating. Preferably, the water soluble topcoat does not comprise a photothermal converter. In another embodiment of the invention, the method comprises applying to a substrate a composition comprising: (a) a photothermal converter; (b) at least one polymer comprising thiosulfate groups; and (c) an additive selected from the group consisting of diazonium, iodonium, copper(I), alkoxypyridinium or maleimide additives.
Abstract:
An imaging member, such as a negative-working printing plate or on-press cylinder, can be prepared using a hydrophilic imaging layer comprising a hydrophilic heat-sensitive polymer containing a crosslinking agent comprising ionic groups and epoxy groups. This polymer may comprise quaternary ammonium carboxylate groups which may include at least one substituted-alkylene(C1-C3)-phenyl group. The imaging member also includes an infrared radiation sensitive material to provide added sensitivity to heat that can be supplied by laser irradiation in the IR region. The heat-sensitive polymer may be “switchable” in response to heat, and provides a lithographic image without wet processing.
Abstract:
A thermally imagable article comprises a substrate on which is coated a positive working heat-sensitive composition comprising a hydroxyl group-containing polymer and a heat-labile moiety which decreases the developer solubility of the composition as compared to the developer solubility of the composition without the heat-labile moiety, wherein the heat-sensitive composition does not comprise an acid generating moiety. The invention also provides novel positive working compositions comprising heat-labile moieties, and imagable articles comprising said compositions.
Abstract:
Imageable precursors for masks and for electronic parts comprise a polymeric layer applied to a substrate. The layer comprises at least one polymer having infra-red absorbing groups carried as pendent groups on the polymer backbone. Certain infrared absorbing groups may also act to insolubilize the polymer in a developer, until it is imagewise exposed to infra-red radiation. Imagewise application of heat, resulting from imagewise exposure of the precursor to infra-red radiation, renders the polymer layer more soluble in the developer than prior to exposure to the infra-red radiation.
Abstract:
Infra-red absorbing polymers useful in imageable products and the lithographic printing field comprise infra-red absorbing groups carried as pendent groups on a polymer backbone. Certain infra-red absorbing groups may also act to insolublize the polymer in a developer, until it is imagewise exposed to infra-red radiation. The resulting heat renders the polymer soluble in the developer. Imageable products employing the infra-red absorbing polymers may include positive working lithographic printing plates.
Abstract:
A method for imaging patterning compositions comprising the steps of: (1) providing at least one patterning composition layer on a substrate; said patterning composition comprising: (a) at least one acid generator; (b) at least one cross linking resin or compound; (c) at least one binder resin comprising a polymer containing reactive pendant group selected from group consisting of hydroxyl, carboxylic acid, sulfonamide, active imide, alkoxymethylamides and mixtures thereof; and (d) at least one infrared absorber; (2) imagewise exposing the patterning composition layer to actinic radiation; (3) treating the imaged patterning composition layer with heat energy to treat the imaged portions of the composition layer; (4) flood exposing the heat-treated, imaged patterning composition layer with UV light for a predetermined time, said time being sufficient to promote the effective clear-out of non-imaged portions during the developing step without causing substantial deterioration of the imaged portions; and (5) developing the flood exposed, heat-treated imaged patterning composition with an aqueous alkaline developer to remove the non-imaged areas of the patterning composition layer and leaving the imaged areas substantially unaffected.
Abstract:
The invention provides a lithographic printing for precursor having an imagable coating on an aluminum support, wherein the imagable coating comprises a polymeric substance comprising colorant groups, and wherein the aluminum support on which the coating is provided is anodized but not subsequently modified by means of a post-anodic treatment compound, and the coating does not comprise a colorant dye. The polymeric substance may also comprise pendent infra-red or developer dissolution inhibiting groups, and these groups may also be the colorant groups themselves.
Abstract:
A method for applying a matting layer to a radiation-sensitive layer of a printing plate precursor comprises: (a) providing a matting composition comprising a polymer and a solvent, wherein the matting composition has a solid content of more than 10% and no more than 50% by weight based on the total composition; and (b) spraying the matting composition on the radiation-sensitive layer using an electrostatically aided rotary atomizer having a bell speed of more than 10,000 rpm, wherein the distance between the bell and the radiation-sensitive layer to be coated is less than 50 cm.
Abstract:
A precursor element for making a lithographic printing plate is composed of a support, an ink receptive thermal conversion inner layer and a sol-gel, ink repellent outer layer. The outer sol-gel layer containes crosslinked colloids derived from certain metal oxides or hydroxides. The plates produced from the ellements are long-running plates that require no post-imaging processing.