摘要:
Prepared is a transcribing plate comprising a glass substrate and a chromium film formed on a surface of the glass substrate. The transcribing plate is disposed on a surface of an object (for example, a glass substrate of a plasma display panel) such that the chromium film faces the surface of the object. The transcribing plate is pressed toward the object, if necessary. A predetermined identification code pattern is drawn on the transcribing plate by a YAG laser beam. The laser beam reaches, through the glass plate, the chromium film to heat it. Chromium vapors generated by the heating are deposited on the surface of the object. This means that the identification code pattern is transcribed on the object surface.
摘要:
A current sensor 20 in the form of a coil such as a toroidal coil provides as its output a current sense signal TS representative of a differential waveform of a welding current I. In a waveform restoring unit 22, integrating circuits 30 and 32 are switchable between an enable state (first state) and a reset state (second state). In the enable state, the current sense signal TS from the current sensor 20 is integrated and issued as integration value signals AIa and AIb representative of a waveform of the welding current I, whereas in the reset state, the integration value signals AIa and AIb are reset to reference values (e.g., 0 volt). A switching circuit 34 detects timings of each cycle or each half-cycle of the welding current I on the basis of a waveform of the current sense signal TS, and alternately switches the states of the integrating circuits 30 and 32 in a complementary manner and at a predetermined timing so that while one is placed in the enable state, the other is in the reset state. An output circuit 36 accepts the integration value signals AIa and AIb from the two integrating circuits 30 and 32 at the above predetermined timing and issues the thus accepted integration value signals as a current waveform restoration signal AI.
摘要:
To prevent a power supply from being covered with dew for circuit protection and to downsize or simplify a laser apparatus: An excitation lamp 10 and a YAG rod (laser medium) 12 of a laser oscillator are disposed within a chamber 14. Heat-generating electrical components or elements of the power supply, such as diodes D1-D6 of a three-phase full-wave rectifier circuit 24, IGBT 26, GTR 30 and output transistors of driver circuits 34 and 36 are mounted on a heat sink 46. A water-cooled cooling apparatus 50 supplies deionized water (cooling water) DW whose temperature is controlled at a predetermined temperature, for instance, 25-35 degrees centigrade to the heat sink 46 of the power supply via pipes 72 and 76 as well as the chamber 14 of the laser oscillator via pipes 70 and 74.
摘要:
Inverter-resistance welding control, for any resistance welding machine and for any welding operation, which guarantees a welding current having a quick rise time and which is free from overshoot. In particular, when a maximum allowable current value of the resistance welding machine involved has been entered and a selected current value of a particular welding operation has been entered, a CPU computes an initial pulse width of a control pulse from the maximum allowable current value and the selected current value. In a first cycle of the welding operation, the CPU supplies a first control pulse having the initial pulse width to the inverter circuit to thereby start the welding operation. The initial control pulse width is determined as a function of a machine current capacity and the desired current level of a welding operation, and may be made in proportion to a relative magnitude (ratio) of the desired current to the machine current capacity. In the subsequent cycles of the welding operation, the CPU reads the measured current value of each cycle and compares it with a selected current value to compute the deviation of the measured current value. Based on the deviation, the CPU determines a next pulse width in order that the deviation will be cancelled.
摘要:
A laser system is provided with a plurality of light emitting diodes arranged to energize the laser source. The individual diodes have separate controls so that they may be turned on separately from one another for different periods of time and to produce different amounts of illumination. A controller such as a CPU may be programmed to actuate the controllers in a desired manner to achieve to a controlled light profile upgrading versatility and accuracy of laser systems. In addition to sequencing individual light emitting diodes in various combinations, the diodes may be energized simultaneously in various combinations. A first combination may be illuminated for a relatively long time and a second combination energized to overlap part or all of the period of that first combination, or even to extend beyond the period of the first. Thus, in addition to adjusting pulse width time, time spacing between pulses and overlap of pulses may be adjusted as well as light amplitude of individual diode light sources.
摘要:
To provide a resistance welding and laser beam processing controller which greatly facilitates the work of inputting (setting) welding or processing conditions for a number of schedules. Using a programming unit 10, an operator calls a schedule screen on the unit and inputs a desired value (data) of each welding condition item for any one of a plurality of welding schedules, such as, for example, schedule number "01". Then the programming unit and a main control each write the input data (setup data) into a RAM at each storage location in a storage area allocated to schedule number "01". Next, the operator calls a copy setup data screen on the programming unit, selects the welding schedule number "01" as the source, selects all the other welding schedule numbers "02" to "15" as the destination and requests copy setup data. Then the programming unit and the main control, each execute a data transfer within memory, so that within the RAM whole setup data of welding conditions for the source schedule number "01" have been copied as whole setup data of welding conditions for the destination schedule numbers "02" to "15".
摘要:
To adapt temperature control of a secondary cooling water to the temperature of a primary cooling water: A control apparatus computes duty factor D from measured open time period T.sub.ON and closed time period T.sub.OFF of a solenoid valve (step B3) for each cycle of the solenoid valve operation (step B2). The apparatus classifies the computed duty factor into one of a plurality of predetermined ranges and conditionally updates the reference temperature Pt of the secondary cooling water based on the classification (B5, B6, B7). If the reference temperature has reached an upper limit P.sub.MAX and if the duty factor has exceeded an upper limit, e.g., 95 percent (B8), the apparatus stops the operation of a laser oscillator and provides an alarm.
摘要:
A laser apparatus includes an electric power supply system and a cooling water supply system. Both the electric terminals of the electric power supply system for connection with an external power cable and ports of the cooling water supply system for communicating with external pipes are placed in the forward part of the laser apparatus for facilitating its maintenance. A storage tank stores cooling water to be supplied to a laser oscillator. Both an ion exchanger and a filter are commonly housed in the tank to downsize the apparatus, to minimize the water leakage and to effectively purify the cooling water. Interchangeable flow control valves are provided for different electric power frequencies. According to the available power frequency an appropriate one of the valves is chosen and connected to internal piping to achieve the desired flow rate of the cooling water supplied to the laser oscillator.