Abstract:
A light sensing device includes a substrate, a plurality of light sensing elements and a cover. The plurality of light sensing elements are disposed on the substrate for sensing light. The cover is utilized for sheltering the plurality of light sensing elements, wherein the cover includes a hole for passing the light. A set of the plurality of light sensing elements is selected to be enabled according to a location of the hole relative to the plurality of light sensing elements.
Abstract:
The present application provides a proximity detection circuit and a proximity detection method with compensation. The proximity detection circuit comprises a detection circuit, a baseline processing circuit and a proximity sensing circuit. The detection circuit generates a detection data and a reference data. The proximity sensing circuit generates a proximity signal according to a proximity threshold, the detection data and a baseline data generated from the baseline processing circuit, and the proximity detection circuit and the proximity detection method compensate the baseline data or the proximity threshold according to the reference data. The condition of misjudgment may be avoided under the influence of environmental factors.
Abstract:
The present invention discloses a light sensing device packaging structure and the packaging method thereof. The packaging structure comprises a substrate, a transparent molding substance, a first glass, and a sheltering element. A first optical element and a second optical element are disposed on the substrate. The transparent molding substance covers the first optical element and the second optical element. A bottom surface of the first glass is fixed on the transparent molding substance and aligned with the first optical element. The sheltering element covers the edge of the transparent molding substance not covered by the first glass. This design maintains the excellent optical sensing effect of the light sensing device while allowing for miniaturization of the overall structure.
Abstract:
The present application relates to an electronic device comprising: a display unit, a display driver circuit and a circuit element. The display driver circuit is coupled to the display unit. The circuit element is placed under a display area of the display unit. The circuit element receives a dynamic refresh signal generated by the display driver circuit. The dynamic refresh signal contains a refresh rate information of the display unit. Thereby, the problem that the interference between the display pixels and the circuit element under the display unit cannot be avoided when the refresh rate changes is solved.
Abstract:
The present application discloses a light sensor circuit, which comprises a photodiode and a capacitor unit. The cathode of the photodiode is controlled by a capacitive unit to maintain the same or close voltage level as the anode of the photodiode, which significantly reduces the effect of the dark current of the photodiode. Thus, the light sensor circuit can effectively maintain the performance and accuracy of an analog-to-digital converter applying the light sensor circuit. The circuit design difficulty and manufacturing cost are also significantly reduced.
Abstract:
The present application provides a transmission structure of an antenna and a proximity sensing circuit. The transmission structure includes a transmission line and at least one radio-frequency short-circuit element, a first coupling end of the transmission line is coupled to an antenna, and a second coupling end of the transmission line is coupled to a proximity sensing circuit, and the at least one radio-frequency short-circuit element is coupled between the transmission line and a ground, and is located between the antenna and the proximity sensing circuit. Utilizing the at least one radio-frequency short-circuit element in conjunction with the transmission line so that the transmission path between the antenna and the proximity sensing circuit has the high impedance, and hence preventing a radio-frequency signal from the antenna from affecting the sensing accuracy of the proximity sensing circuit.
Abstract:
An operation method of an optical sensor comprising receiving an ambient light by a light-sensing device. Record a signal generated by the light-sensing device after receiving the ambient light by a operation unit. A flicker frequency of the ambient light is determined by the operation unit. A signal operation parameter is set according to the flicker frequency, and the signal operation parameter comprises a sampling time difference, which is the starting time interval of two corresponding integration time periods of a plurality of integration time periods. Furthermore, the light-sensing device and the operation unit start the calculation of the intensity of the ambient light, so that the flicker component of an ambient light source may be eliminated from the light sensing result to produce a stable sensing result.
Abstract:
The present invention relates to a proximity sensor and a proximity sensing method. The proximity sensor includes a sensing element and a sensing circuit. The sensing circuit is coupled to the sensing element and transmits a first driving signal and a second signal to the sensing element, respectively. The sensing element receives the first driving signal and the second driving signal, respectively, and generates a first sensing signal and a second sensing signal, respectively. The sensing circuit generates a proximity signal according to the first sensing signal and the second sensing signal. Therefore, the present invention may improve the accuracy of sensing the proximity of the human body whether near to the sensor. In addition, the sensing circuit is further coupled to a radio-frequency circuit, and the sensing circuit transmits a driving signal or/and receives a sensing signal according to the state of the radio-frequency circuit, thereby reducing interference of the sensing circuit to the radio-frequency circuit.
Abstract:
The present invention provides a gyroscope structure. A frame disposed on a substrate, and a flexible element is correspondingly disposed a first, second, and third plate. The first plate has a second flexibility. The second plate is connected to the second plate, the second plate is connected to the third plate with a fourth flexible element, the second plate is provided with a first through-hole, and a rotating plate is pivotally connected in the first through-hole. The rotating plate is connected to a supporting column of the substrate by a fifth flexible part, and then a sensing element is provided on the substrate corresponding to the first, second, and third plates to sense the movement and movement of the plates. Rotating, in one embodiment, the first and third plates are provided with through-holes, and corresponding sensing elements and driving elements are provided.
Abstract:
The present application provides an organic display device, which comprising a light sensing device and an organic light emitting diode display panel, based on the organic light emitting diode display panel disposed on the light sensing device, and first and second light sensing regions disposed on the light sensing device, and first and second filtering devices further disposed on the first and second light sensing regions, the light sensing device senses an ambient signal passing through the organic light emitting diode display panel, the first and second filtering devices, and a display signal generated from the organic light emitting diode display panel and passing through the first and second filtering devices. Thereby, the ambient light signal and display light signal are sensed by a light sensing manner under the display panel (under display sensing).