Abstract:
A nanostructure, being either an Inorganic Fullerene-like (IF) nanostructure or an Inorganic Nanotube (INT), having the formula A1−x-Bx-chalcogenide are described. A being a metal or transition metal or an alloy of metals and/or transition metals, B being a metal or transition metal B different from that of A and x being ≦0.3. A process for their manufacture and their use for modifying the electronic character of A-chalcogenide are described.
Abstract:
The present invention relates to a novel system and method for the determination of depth profiling with improved accuracy and reliability. The method comprises obtaining spectroscopic data from the sample while under at least two different electrical conditions of the sample, the spectroscopic data comprising a signal of charged particles emitted from the sample, and being indicative of a change in amplitude, spectral position and spectral shape of the signal from the sample while under different electrical conditions of the sample, the change being indicative of the compositional profile and spatial distribution for at least one chemical element in the sample along a direction through the sample.
Abstract:
A method and system (10) are presented for producing exciting radiation (P′) to be used in producing an output coherent anti-stokes Raman scattering (CARS) signal of a medium (12). An input spectral phase coherent optical pulse (P), carrying a pump, a Stokes and a probe photon, is optically processed by adjusting spectral phase and polarization of wavelength components of the input pulse to produce a unitary optical exciting pulse (P′) that carries the pump photon, the Stokes photon and multiple probe photons and is capable of inducing interference between contributions from at least some of vibrational levels in the CARS signal.
Abstract:
A nanostructure, being either an Inorganic Fullerene-like (IF) nanostructure or an Inorganic Nanotube (INT), having the formula A1−x-Bx-chalcognide are described. A being a metal or transition metal or an alloy of metals and/or transition metals, B being a metal or transition metal B different from that of A and x being ≦0.3. A process for their manufacture and their use for modifying the electronic character of A-chalcognide are described.
Abstract:
A process and apparatus are presented for obtaining inorganic fullerene-like nanostructures. A metal oxide is evaporated at predetermined temperature conditions, and is swept towards a reacting zone, to which first and second gas phase reacting agents are concurrently swept. The evaporated metal oxide thus interacts with the first reacting agent and is converted into metal suboxide nanoparticles in the gas phase. The condensing metal suboxide nanoparticles interact with the second reacting agent in the gas phase resulting in substantially pure phase of the inorganic fullerene-like nanoparticles.
Abstract:
Method and system for footprinting a nucleic acid molecule. A sample consists of a nucleic acid molecule in an environment in which —OH radicals are generated when the environment is irradiated with an X-ray beam having an intensity less than 109 photons sec−1 mm−2 for an amount of time less than 1,000 msec. The sample is then irradiated with an X-ray beam having an intensity less than 109 photons sec−1 mm−2 for an amount of time less than 1,000 msec so as to generate —OH radicals in the environment. Fragmentation of the nucleic acid molecule is then detected.
Abstract:
A method and system (10) are presented for producing exciting radiation (P′) to be used in producing an output coherent anti-stokes Raman scattering (CARS) signal of a medium (12). An input spectral phase coherent optical pulse (P), carrying a pump, a Stokes and a probe photon, is optically processed by adjusting spectral phase and polarization of wavelength components of the input pulse to produce a unitary optical exciting pulse (P′) that carries the pump photon, the Stokes photon and multiple probe photons and is capable of inducing interference between contributions from at least some of vibrational levels in the CARS signal.
Abstract:
There are provided polypeptides which bind to caspase-8. Production and use of such polypeptides is also provided, as well as DNA encoding them, and vectors and host cells having such DNA.
Abstract:
A method and device are provided for automatically generating a key and a conjugate key to be used in an optical code division multiple access system. The method comprises applying a down conversion process to pump input light to thereby produce down converted broadband signal and idler fields that are complex conjugates of each other. The signal and idler fields thus serve as the key and its conjugate. Also provided according to the invention is a method for use in coding/decoding a signal in an optical code division multiple access system.
Abstract:
There are provided polypeptides which bind to caspase-8. Production and use of such polypeptides is also provided, as well as DNA encoding them, and vectors and host cells having such DNA.