Abstract:
The present invention provides a polymerizable composition comprising (A) a compound represented by the following formula (I), (B) an infrared absorbent, and (C) a compound having at least one addition-polymerizable ethylenically unsaturated bond, and a negative planographic printing plate precursor having a recording layer containing the polymerizable composition. In the formula (I), R1, R2, R3, R4, R5, and R6 each independently represent a hydrogen atom or a monovalent organic group; and X− represents an anion.
Abstract:
A method of light exposure recording on a planographic printing plate, wherein the planographic printing plate includes a support and an image recording layer provided on the support, the image recording layer includes a radical polymerization initiator, the method comprising: irradiating the image recording layer with a predetermined amount of a first light, whereby the radical initiator generates a radical, the radical is quenched by free oxygen in the image recording layer, so that free oxygen in the image recording layer is exhausted and disappears from the image recording layer and that the image recording layer is supersensitized; and then rradiating the image recording layer with a second light as a recording light modulated on the basis of image information, so as to form a latent image corresponding to the image information on the image recording layer. Also provided is an apparatus for practicing the invention.
Abstract:
A curable composition comprising: (A) an infrared absorber which is a cyanine dye having a structure in which hetero rings are bonded to each other via a methine chain and which has at least one substituent having a structure selected from the group consisting of an amide bond, a urethane bond, a urea bond and a sulfonamide bond on at least one of aromatic rings at both ends, nitrogen atoms present on the hetero rings at both ends and the methine chain; (B) at least one of a radical generator and an acid generator; and (C) at least one of a radical polymerizable compound and an acid crosslinking agent.
Abstract:
A lithographic printing plate precursor comprising an aluminum substrate, an image-recording layer and a hydrophilic film, the aluminum substrate being subjected to an electrochemical surface-roughening treatment in an aqueous solution comprising hydrochloric acid and provided with the hydrophilic film having a heat conductivity of 0.05 to 0.5 W/mK and/or at least one of a density of 1,000 to 3,200 kg/m3 and a porosity of 20 to 70%; and a lithographic printing plate precursor comprising an aluminum substrate, an image-recording layer and a hydrophilic film, the aluminum substrate having a surface-roughened shape comprising a small pit wherein an average opening size of the small pit is 0.01 to 3 μm and a ratio of an average depth of the small pit to the average opening size is 0.1 to 0.5, and being provided with the hydrophilic film having a heat conductivity of 0.05 to 0.5 W/mK and/or at least one of a density of 1,000 to 3,200 kg/m3 and a porosity of 20 to 70%.
Abstract translation:包括铝基板,图像记录层和亲水膜的平版印刷版原版,所述铝基板在包含盐酸的水溶液中进行电化学表面粗糙化处理,并提供具有导热性的亲水膜 0.05〜0.5W / mK和/或密度为1000〜3200kg / m 3的孔隙率和20〜70%的孔隙率中的至少一种。 以及包含铝基板,图像记录层和亲水膜的平版印刷版原版,所述铝基板具有包括小坑的表面粗糙化形状,其中小坑的平均开口尺寸为0.01〜3μm, 小坑的平均深度与平均开口尺寸的比例为0.1〜0.5,并且具有导热率为0.05〜0.5W / m·K的亲水性膜和/或密度为1000〜3,200 kg / m 3,孔隙率为20〜70%。
Abstract:
A stack of lithographic printing plate precursors, which comprises: at least one lithographic printing plate precursor comprising: an aluminum support having a roughened surface; and an image recording layer comprising (A) an infrared absorber, (B) a polymerization initiator and (C) a polymerizable compound, wherein the image recording layer is capable of being removed with at least one of a printing ink and a fountain solution; and an interleaving sheet interposed between a first one and a second one of said at least one lithographic printing plate precursor, wherein said at least one lithographic printing plate precursor has a dynamic friction coefficient between an outermost surface of said at least one lithographic printing plate precursor and the interleaving sheet of 0.25 to 0.70.
Abstract:
An on-press development or non-processing (non-development) type lithographic printing plate precursor capable of giving a printout image having a large lightness difference, and a lithographic printing method using this lithographic printing plate precursor are provided, a lithographic printing plate precursor comprising a support and a photosensitive-thermosensitive layer capable of recording an image by infrared laser exposure, the lithographic printing plate precursor being capable of performing a printing by loading on a printing press without passing through a development processing step after recording an image, or by recording an image after loading on a printing press, wherein said photosensitive-thermosensitive layer comprises (1) an infrared absorbent and (2) a discoloring agent or discoloration system capable of generating a color change upon exposure; and the lithographic printing method performing a printing using the above-described lithographic printing plate precursor.
Abstract:
The present invention provides a planographic printing plate precursor including a support, and a recording layer which is formed on the support and includes a water-insoluble and alkali-soluble resin having active hydrogen in a main chain thereof and an infrared absorbent, the solubility of the recording layer in an aqueous alkaline solution being increased by exposure to light; and a planographic printing plate precursor including a support, and a recording layer formed on the support, wherein the recording layer includes a lower layer which is formed on the support and includes a water-insoluble and alkali-soluble resin having active hydrogen in a main chain thereof, and an upper layer which is formed on the lower layer and includes a water-insoluble and alkali-soluble resin and a development inhibitor, the solubility of the upper layer in an aqueous alkaline solution being increased by exposure to light, and at least one of the lower layer and the upper layer of the recording layer includes an infrared absorbent. According to the invention, there is provided is a positive planographic printing plate precursor which can provide a printing plate directly from scanning exposure based on digital signals and is excellent in printing durability and chemical resistance.
Abstract:
A lithographic printing plate precursor comprises an image-forming layer containing a polymerization initiator and a polymerizable compound, and a hydrophilic support, wherein the lithographic printing plate precursor comprises a compound containing at least one functional group having an interaction with a surface of the hydrophilic support.
Abstract:
The present invention relates to a method for developing a lithographic printing plate precursor suitable for applying a positive-working lithographic printing plate precursor for infrared laser which is used for direct plate making. Especially, the present invention relates to a method for developing a lithographic printing plate precursor by using an alkaline developing solution containing a development inhibitor, said lithographic printing plate precursor comprising a substrate and an image forming layer thereon which comprises an alkali soluble resin, said method comprising the steps of: (1) predetermining a Relationship α between the concentration of said development inhibitor and the alkalinity of said alkaline developing solution under appropriate development conditions; (2) measuring both said concentration of said development inhibitor and said alkalinity of said alkaline developing solution at the time of developing said precursor; and (3) controlling said concentration of said development inhibitor and/or said alkalinity in order to satisfy said Relationship α.
Abstract:
A lithographic printing plate precursor comprising a support having a hydrophilic surface having provided thereon an image-forming layer containing a hydrophobic high molecular compound having at least either a functional group represented by formula (1) or a functional group represented by formula (2): wherein X+ represents an iodonium ion, a sulfonium ion or a diazonium ion.