Abstract:
A steel cord (10) adapted for the reinforcement of elastomeric products comprises a core strand (12) and a layer of outer strands (14) arranged around the core strand (12). The core strand (12) comprises a core and at least a layer arranged around the core. The core further comprises one to three core filaments and the layer further comprises three to nine layer filaments. The core strand (12) has a first wave form and each filament of the outer strands (14) has a second wave form such that the first wave form is substantially different from the second wave form. This allows to guarantee full rubber penetration.
Abstract:
The invention pertains to the production of cables and can be used for reinforcing single-block constructions and other articles made of concrete. The purpose of the invention is to create a self-rectifying reinforcing member. The reinforcement cable comprises a central wire and layer-forming wires spirally wound around the same and having a periodical profile. A periodical profile is applied on the outer section of the surface of the layer-forming wires and is made in the form of inclined protrusions above the generatrix of the crimped surface of the cable. The sections of the surface of the layer-forming wires in contact with other wires are made in the form of spirally-arranged planar flats. The cable is secured at the base of the structure and is attached upon each casting cycle between the previously-formed portion of the structure and a distribution matrix. The cable is supplied via bypass rollers and a guiding trough from reels arranged at the base. Before each casting cycle, the matrix is moved by a distance corresponding to a section to be formed. Each reinforcing member is integral along the entire length of the structure. The connection of perpendicular members is made using inserts or a tie wire.
Abstract:
A rubber-steel cord composite is provided having nonlinear physical properties even in a rubber characterized by incompressive properties after vulcanization, and hence the rubber-steel cord composite can show low rigidity and flexible properties in a low-strain region and, on the other hand, can show high rigidity in a high-strain region. The rubber-steel cord composite is provided by bundling steel linear objects 1 subjected to spiral shape forming at substantially identical pitches in an approximately identical phase without twisting, the steel cord being embedded in rubber.
Abstract:
A tire reinforcing steel cord (1, 10) is provided which has a 1nulln structure formed by twisting together four to seven individual wires having a wire diameter of 0.20 to 0.45 mm, the steel cord being wound a plurality of times in the vicinity of opposite side edges of a belt section of a tire, wherein the steel cord has a substantially spiral or a substantially planar wavy deformation, has an elongation of 1.2% to 2.0% when applying a tensile load of 50 N in a tensile test according to JIS B 7721, and becomes substantially linear with its wavy deformation disappearing under a tensile load in the range of 50 to 250 N. When the steel cord is embedded in a tire as a zero degree belt cord, it stretches to a moderate extent so as to track the expansion of the tire in the radial direction during the vulcanization process in the molding of the tire, and since the steel cord has low stretch after the tire has been molded, it is possible to restrain expansion of the tire in the radial direction during continued high speed rotation of the tire.
Abstract:
A steel cord intended for use to reinforce rubber products is produced by drawing, into a steel filament of 0.10 to 0.40 mm in diameter and more than 3,000 N/mm.sup.2 in strength, a wire rod having a carbon content of more than 0.70% by weight, and twisting a plurality of such steel filaments together. Also a pneumatic tire is provided which employs in at least a portion of a reinforcing member thereof the steel cord improved in corrosion resistance and having an R.sub.1 /R.sub.0 ratio.times.100 which is less than 100, where R.sub.0 is the radius of spiral curvature of the spiraled steel filament resulting from untwisting said steel cord and R.sub.1 is the radius of spiral curvature of said steel filament of which the surface layer inside the spiral is removed by dissolving.
Abstract:
A steel cord for reinforcing a rubber product has a multilayer structure consisting of two or more layers including a core, or a structure consisting of seven or more strands twisted in the same direction at the same pitch. In the steel cord, at least one of three strands that are successively adjacent to one another or that are in mutual contact is formed of two filaments that are paired substantially parallel to each other. The direction of pairing the two filaments of each strand is substantially the same over the entire length of the cord. Each of the remaining strands is formed of a single filament.
Abstract:
A steel cord which is suitable for reinforcing a rubber product and has excellent fatigue resistance. The steel cord has a layer-twisted structure formed by steel filaments respectively having a diameter of 0.15 mm to 0.25 mm. A core of the steel cord is formed by 1 to 4 steel filaments. A least 6 steel filaments are wound around the steel filaments of the core to form at least one layer. When the steel cord is bent from a straight state to a state in which a radius of curvature thereof is d/(17.times.10.sup.-3) wherein d is a diameter in millimeters of each steel filament in an outermost layer of the steel cord, a maximum amount of movement of each steel filament in the outermost layer in a cross-section of the steel cord is less than or equal to (-0.5454d+0.1454).times.10.sup.3 um. The steel cord preferably has a two-layer-twisted structure or a three-layer-twisted structure, and has an arrangement in which the diameters of the steel filaments gradually decrease from the core to the outermost layer.
Abstract:
A steel cord (10) has a diameter D and includes a core strand (12) and up to nine peripheral strands (14) surrounding the core strand. The core strand (12) has a diameter D1 and the peripheral strands (14) have a diameter D2. The ratio core strand diameter to peripheral strand diameter D1/D2 is greater than a predetermined value in order to enable rubber penetration. Each strand has a center of one or more center filaments (16, 22) and two or more layers of filaments (18, 20, 24, 26) surrounding the center. The twist angle of a radially outer layer is smaller than the twist angle of a radially inner layer of the same strand. A first free space (28) ranging from 0.0015.times.D to 0.0075.times.D is provided in at least the core strand between each pair of filaments (18) of the radially most inner layer.
Abstract:
A steel cord reinforcement for elastomers and elastomeric articles comprising a steel cord crimped in a zig-zag fashion used in the warp direction of the reinforcing fabric; the crimps of adjacent warped cords lie in phase, and the wave length p of the crimp and the amplitude c of the crimp are related such that 0.02 p.ltoreq.c.ltoreq.0.07 p; to achieve optimal properties of cord elongation and cord deformation, the relationship S=k p.sup.2 wherein 0.7.ltoreq.k.ltoreq.3, and the stiffness S=10.sup.4 N [.SIGMA.(D.sub.i.sup.4 .times.n.sub.i)] wherein D.sub.i represents the diameter of wire filament "i" in the cord, n.sub.i is the number of wires "i" per warp cord, and N is the number of warp cords per mm width of the fabric.