Abstract:
An apparatus for producing an assembly of filamentary elements that are wound together in a helix includes a twisting device, a preforming device, and an assembling device. The twisting device is structured to twist at least first and second filamentary elements individually, such that each filamentary element is twisted separately from another filamentary element, to produce at least first and second twisted filamentary elements. The preforming device, which is arranged downstream of the twisting device, is structured to preform each of the twisted filamentary elements individually into separate preformed helixes, to produce at least first and second preformed helixes. The assembling device, which is arranged downstream of the preforming device, is structured to assemble the preformed helixes into an assembly.
Abstract:
A facility for manufacturing at least first and second assemblies of M1 filamentary elements and M2 filamentary elements, in which each of the first and second assemblies includes a plurality of filamentary elements wound together in a helix, includes an assembling apparatus and a splitting apparatus. The assembling apparatus of the facility assembles M filamentary elements together into a layer of M filamentary elements around a temporary core, to form a temporary assembly. The splitting apparatus of the facility splits the temporary assembly into at least the first and second assemblies of M1 filamentary elements and M2 filamentary elements.
Abstract:
A steel cord (30) with a high elongation at break of at least 5% comprises n strands (20), each of said strands (20) has m filaments (10) twisted together, n ranges from 2 to 7. m ranges from 2 to 9. The strands and the filaments are twisted in a same direction. The lay length of the cord is Lc and the lay length of said strand is Ls. The ratio of Ls to Lc (Ls/Lc) ranges from 0.25 to 1. Lc ranges from 16 mm to 26 mm. The strands are helically preformed. The E-modulus of the cord is more than 150000 N/mm2. The helical preforming of the strands allows to obtain a high elongation at break and a high E-modulus despite its long lay length Lc.
Abstract:
A method is provided for making metal cords to be used as reinforcing elements in elastomeric structures which comprises arranging the wires in groups with the wires of each group being arranged coplanar and side by side, permanently deforming the wires by bending to wind the wires in a regular and uniform helical arrangement, with the helexes of all the wires having the same geometrical characteristics. The resulting cord is free from residual tensions which might loosen the mutual strand.
Abstract:
A steel cord (10) adapted for the reinforcement of elastomeric products comprises a core strand (12) and a layer of outer strands (14) arranged around the core strand (12). The core strand (12) comprises a core and at least a layer arranged around the core. The core further comprises one to three core filaments and the layer further comprises three to nine layer filaments. The core strand (12) has a first wave form and each filament of the outer strands (14) has a second wave form such that the first wave form is substantially different from the second wave form. This allows to guarantee full rubber penetration.
Abstract:
A steel cord (10) adapted for the reinforcement of rubber products, the steel cord (10) comprises a core (12) and three or more outer strands (14) twisted around the core (12) in a cord twisting direction. The outer strands (14) comprise outer filaments (16) twisted in a strand twisting direction which is the same as the cord twisting direction. The outer strands (14) have a wavy form which makes spaces between the core (12) and the outer strands. The steel cord (10) has improvements on elongation at break and impact resistance capacity.
Abstract:
There are provided an annular concentric stranded bead cord which can realize a reduction in weight while ensuring its strength, a method for manufacturing the same and a vehicle tire.The manufacturing method is a method for manufacturing an annular concentric stranded bead cord by forming a sheath layer by winding spirally a lateral wire round an annular core. After the sheath layer has been formed, the lateral wire is annealed in a pressure-reduced inactive gaseous atmosphere with an annealing quantity which exceeds a heating quantity (temperature×time) which is necessary for vulcanization of a vehicle tire with the annular concentric stranded bead cord embedded in a rubber of the vehicle tire when building the same and is shaped so that “Diameter shaping ratio (%)=H/D×100” becomes 20% or larger and 105% or smaller.
Abstract translation:提供了一种环形同心绞合胎圈帘线,其可以在确保其强度的同时实现重量的减轻,其制造方法和车辆轮胎。 制造方法是通过围绕环形芯螺旋地缠绕侧线而形成护套层来制造环形同心绞合胎圈帘线的方法。 在形成护套层之后,将侧线在减压惰性气体气氛中退火,其退火量超过用环形同心绞线珠子对车辆轮胎硫化所需的加热量(温度×时间) 帘线嵌入车轮胎的橡胶中,并且成形为“直径成形率(%)= H / D×100”变为20%以上且105%以下。
Abstract:
A steel cord that is especially useful for reinforcing a crown portion of a tire is provided. In particular, a steel cord free from manufacturing problems existed in the conventional art and allowing for stable quality and good production efficiency is provided, and a rubber-steel cord composite and a tire that are equipped with the same are provided.A steel cord has a multiple-twist structure including N (N=2 to 8) strands 2 that are twisted together, each strand 2 having a plurality of wires 1 that are twisted together. When the diameter of each strand is denoted by d (mm), the diameter of a circle circumscribing the cord is denoted by D (mm), and the twisting pitch of the cord is denoted by P (mm), εc defined by the following expression, εc=√(−b/2+√(b2/4−c))−1 (where b denotes −1+π2(−4R2+d2)/P2, c denotes π2d2k(4π2R2+P2)/P4, R denotes (D−d)/2, and k denotes tan2(π/2−π/N)), satisfies εc≧0.005.