Abstract:
A wind turbine has a Lidar device to sense wind conditions upstream of the wind turbine. Signals from the wind turbine are processed to detect an extreme event. On detection the system controller takes the necessary evasive action depending on the nature and severity of the extreme condition detected. This may include a significant reduction in power generated, complete shutdown of the generator and yawing of the nacelle and rotor to reduce loading on the rotor blades.
Abstract:
The invention relates to a control device for a wind power plant having an electrical system and a rotor including a plurality of rotor blades driven by wind, and outputting a mechanical rotor power to the electrical system. The system converts the mechanical rotor power at least partially into electrical power. The control device includes a blade sensor associated with at least one of the rotor blades and measuring at least one physical property of the rotor blade dependent on at least one characteristic value of a wind field describing the wind at the location of the rotor. The blade sensor generates a blade sensor signal characterizing the physical property. The control device also includes an estimation unit to determine an estimated value for the electrical power as a function of the blade sensor signal.
Abstract:
Wind farm, of the kind that comprises a series of wind turbine generators, which consist of a rotor, a generator, a control unit and means of connection to the computing network for the wind farm of which they form part, in such a way that at least two of the wind turbine generators in the farm can assume a leader hierarchy for the wind farm, accessing the operating data of the rest of the wind turbine generators, calculating and sending instructions to the rest of the wind turbine generators making up that wind farm, and a subject hierarchy, receiving and following the instructions coming from the leader wind turbine generator of the wind farm.
Abstract:
Operation method for a variable speed wind turbine which comprises control methods for blade pitch in cases of extreme gusts of wind, characterized by the fact that it is comprised of the following steps: a) detection of the presence of an extreme gust of wind; b) performance of a sudden increase in pitch within the range of 6 to 14 degrees at the maximum speed permitted by the wind turbine blade pitch control mechanisms. The method also includes an additional step; c) vary the generator speed to avoid an increased acceleration of the generator which could make a subsequent step b) necessary.
Abstract:
The present invention discloses a wind power prediction method for a single wind turbine generator, comprising: extracting a plurality of data fragments, each of which has a length of L, from a historical database to determine a feature fragment core library before a current time point T, wherein L is an integer greater than or equal to one; clustering the feature fragment core library to form w cluster subsets and w cluster centers with the adoption of a clustering algorithm, wherein w is an integer greater than or equal to one; and determining power P (T+1) at a time-point T+1 to be predicted according to the w cluster centers and a center of a current time fragment, the current time fragment representing a time period from time point T-Z to time point T, wherein Z is a step number and 1≦Z≦L.
Abstract:
A method for controlling a wind energy system is provided wherein the method comprises determining the effective wind speed taking into account the load on the rotor blades of said wind energy system exerted by the wind is provided. A computer-readable medium is provided that provides instructions which when executed by a computing platform cause the computing platform to perform operations wherein the operations include the method according to embodiments described herein. Further, a wind energy system having a calculation unit adapted for calculating the effective wind speed by taking into account the load on the rotor blades of said wind energy system exerted by the wind is provided. Further, a wind speed sensor free wind energy system having a generator for generating electric energy and a controller for shutting down and/or starting the electric energy generation in dependence of the wind speed is provided.
Abstract:
An apparatus and method for reducing asymmetric rotor load in a wind turbine includes calculating a time delay for pitching each blade toward feather upon initiation of a shutdown condition. The blades with the larger blade angle begin moving toward feather with an initial pitch rate, while the blade with the smallest blade angle begins moving toward feather with a final pitch rate. Once all the blades have reached approximately an identical blade angle, the blades move simultaneously together to feather at the final pitch rate. By introducing the time delay for pitching the blades having higher blade angles at the final pitch rate, a simple, time-based correction of initial conditions during shutdown reduces the extreme loads on turbine components.
Abstract:
A closed loop turbine speed control system for a turbine power production system including a closed loop hydrostatic transmission system for the transfer of energy from a wind turbine rotor to a generator. A displacement actuator is arranged for receiving a displacement control signal from the control system and for controlling a displacement of the displacement motor. The control system includes a turbine rotor speed feedback control loop for calculating the displacement control signal based on deviations of a turbine rotor actual rotational speed from a turbine rotor set rotational speed. In addition a hydraulic pressure meter measures the hydraulic pressure of the hydrostatic system and provides a hydraulic pressure signal as an input to a pressure feedback control loop for stabilizing the displacement control signal based on the hydraulic pressure signal.
Abstract:
A method of controlling a wind turbine, where a control signal for a controllable parameter of the wind turbine is determined repeatingly at successive time steps, and a control history including respective control values derived from or included in past control signals is stored. These control values stored in the control history are then used to determine an alert parameter for the controllable parameter, the alert parameter being a function of the variations of the control signals over time. The wind turbine is then controlled according to the most recent control signal only if the alert parameter is below an alert threshold, and otherwise according to a modified control strategy. The control method may be performed on pitch reference signals for controlling the individual and/or collective pitch of the blades. The invention further relates to a control system configured to perform the above control method, and a wind turbine comprising such system.
Abstract:
A wind turbine generator, an active damping method thereof, and a windmill tower in which vibrations of the wind turbine generator itself or the windmill tower can be reduced at low cost are provided. The acceleration due to vibrations of a nacelle is detected with an accelerometer attached to the nacelle. In an active damping unit, a pitch angle of windmill blades for generating a thrust on the windmill blades so as to cancel out the vibrations of the nacelle is calculated on the basis of the acceleration, and the pitch angle is output as a blade-pitch-angle command δθ* for damping. On the other hand, in a pitch-angle control unit, a pitch angle of the windmill blades for controlling the output to be a predetermined value is calculated, and the pitch angle is output as a blade-pitch-angle command θ* for output control. The blade-pitch-angle command δθ* for damping is combined with the blade-pitch-angle command θ* for output control using a subtracter. The pitch angle of the windmill blades is controlled on the basis of the resulting blade-pitch-angle command after combining.