Abstract:
This invention is directed to a method and apparatus for improving fluid flow and gas mixing in boilers. More particularly, this invention pertains to a method and apparatus for improved fluid flow and gas mixing in kraft recovery boilers for increased energy efficiency, reduced TRS emissions and increased capacity. The method of introducing air into a boiler furnace comprises: (a) introducing air through at least one opening located on at least a first wall of the interior of the furnace; and (b) introducing air through at least one second opening located on a second wall of the interior of the furnace opposed to the first wall at the same, or different, elevations. The method of introducing air into a boiler furnace may also comprise: (a) introducing air into the furnace in the form of a first set of small and large jets originating from one wall of the interior of the furnace; and (b) introducing air into the furnace in the form of a second set of small and large jets originating from the wall of the interior of the furnace opposite the first wall. The locations of the sources of the first set of small and large jets may be placed so that they oppose the sources of the second set of small and large jets, with small jets opposing large jets, and vice versa. The sizes of the jets may be regulated by varying opening size, number of openings in groups of openings, air pressure upstream of the openings, or combinations thereof.
Abstract:
A clustered concentric tangential firing system (12) particularly suited for use in fossil fuel-fired furnaces (10) and a method of operating such furnaces (10) equipped with a clustered concentric tangential firing system (12). The clustered concentric tangential firing system (12) includes a windbox (20), a first cluster of fuel nozzles (38,40) mounted in the windbox (20) and operative for injecting clustered fuel into the furnace (10) so as to create a first fuel-rich zone therewithin, a second cluster of fuel nozzles (68,70) mounted in the windbox (20) and operative for injecting clustered fuel into the furnace (10) so as to create a second fuel-rich zone therewithin, an offset air nozzle (56) mounted in the windbox (20) and operative for injecting offset air into the furnace (10) such that the offset air is directed away from the clustered fuel injected into the furnace (10) and towards the walls of the furnace (10), a close coupled overfire air nozzle (78) mounted in the windbox ( 20) and operative for injecting close coupled overfire air into the furnace (10), and a separated overfire air nozzle (90) mounted in the window (20) and operative for injecting separated overfire air into the furnace (10).
Abstract:
The known pulverized coal combustion method including the steps of separating pulverized coal mixture gas ejected from a vertical type coal grinder into thick mixture gas and thin mixture gas by a distributor, and injecting these thick and thin mixture gases, respectively, through separate burner injecting ports into a common furnace to make them burn, is improved so as to reduce both an unburnt content in the ash and a nitrogen oxide concentration in exhaust gas while maintaining an excellent ignition characteristic. The improvements reside in that an air-to-fuel ratio of the thick mixture gas is regulated to within the range of 1-2, while an air-to-fuel ratio of the thin mixture gas is regulated to within the range of 3-6, and the range of a degree of pulverization of the pulverized coal is regulated to 100 mesh residue 1.5% or less. The degree of pulverization of the pulverized coal fed to the distributor is regulated either by adjusting the rotational speed of a rotary type classifier in the grinder or by adjusting the angles formed between classifying vanes, rotating about the axis of the rotary type classifier, and the direction of rotation.
Abstract:
A combustion system having a furnace defining a combustion chamber includes a first burner disposed at an upper elevation of the combustion chamber and a second burner and a third burner disposed at a lower elevation of the combustion chamber. A first duct extends vertically to convey therein a fuel flow of gas and pulverized fuel. A second duct branches from the first duct to the first burner to convey a first portion of the fuel flow, which is fuel lean, to define a fuel lean flow, wherein a second portion of the fuel flow passes through the first duct as a fuel rich flow. A third duct includes one end disposed longitudinally within the first duct. An impeller is disposed within the first duct upstream of the branching of the second duct and downstream of the one end of the third duct disposed in the first duct. The impeller includes a plurality of blades to direct outwardly the pulverized fuel of the fuel rich flow to provide a fuel reduced content flow passing through the second duct to the second burner, and a fuel concentrated content flow passing through first duct to the first burner.
Abstract:
Devices, methods, and systems for utilizing a burner with a combustion air driven jet pump are described herein. One burner apparatus includes a jet pump located inside a burner housing, the jet pump having a combustion air inlet that receives combustion air, a chamber to receive the combustion air from the combustion air inlet, and a tapered portion of the chamber that tapers to an outlet having a smaller diameter than the diameter of the inlet.
Abstract:
A method and improved furnace for reducing nitrogen oxide emissions from a furnace having a plurality of primary fuel injectors and a plurality of spaced apart over-fire air injectors positioned above the primary fuel injectors are disclosed. Injection of over-fire air produces zones of cooler combustion gasses containing over-fire air that separate zones of hot combustion gasses containing nitrogen oxides. Reburn fuel injectors inject a reburn fuel into the zones of hot combustion making the effluent combustion gases containing nitrogen oxides partially or totally fuel-rich in order to further reduce nitric oxide.
Abstract:
The present disclosure relates to a system and a method for combustion of solid fuels. The combustion system includes burners which supply a mixed flow of fuel and air through a fuel nozzle to the combustion chamber for example of a boiler. The mixed flow of fuel and primary air is supplied to the burner through a duct from a pulverizer where the fuel is grinded to the required finesse. The duct further bends in such a way that one portion is vertical with respect parallel to axis of the boiler 1 A-A is vertical duct and other portion is horizontal duct which is parallel to axis B-B of the fuel nozzle.
Abstract:
A combustion apparatus includes a combustion chamber having multiple combustion zones. A first wind box is in communication with the first combustion zone to feed the fuel to be fed into the combustion chamber for initial combustion of the fuel within the first combustion zone. A second wind box has a reburner in communication with the second combustion zone. The reburner is configured to feed fuel, a reagent and a first portion of the flue gas to be recycled to the second combustion zone into the second combustion zone to reduce nitrogen oxide emissions of the apparatus. A third wind box is in communication with the third combustion zone to feed air to the third combustion zone to complete the combustion process.
Abstract:
A method and an arrangement for optimizing combustion conditions in a fluidized-bed boiler, in which combustion gas is fed at two or more height levels, the first of which is a primary level (P) which is located at the height of a furnace bottom and the second is a secondary level (S) which is located above fuel feed height (F), above which secondary level (S) there can be still other combustion gas feed levels (T, . . . ). At least one combustion gas feed level (P, S, T, . . . ) is fed at different points of the furnace (11) in its horizontal direction with combustion gases having different oxygen contents such that zones of different oxygen content can be formed in the horizontal direction of the furnace (11).
Abstract:
A low NOx combustion method includes steps of injecting reactants into a combustion chamber. A primary reactant stream, including fuel and combustion air premix, is injected from a premix burner port into the combustion chamber. A staged fuel stream is injected into the combustion chamber from a staged fuel injector port adjacent to the premix burner port. A stream of recirculated flue gas is injected into the combustion chamber from a flue gas injector port that is adjacent to the premix burner port and adjacent to the staged fuel injector port. In this manner, the stream of recirculated flue gas is injected into the combustion chamber unmixed with the primary reactant stream and unmixed with the staged fuel stream.