摘要:
Optical element having an optical surface, which optical surface is adapted to a non-spherical target shape, such that a long wave variation of the actual shape of the optical surface with respect to the target shape is limited to a maximum value of 0.2 nm, wherein the long wave variation includes only oscillations having a spatial wavelength equal to or larger than a minimum spatial wavelength of 10 mm.
摘要:
A device for measuring at least one camber geometrical characteristic of an ophthalmic lens provided on at least one of its faces with at least one position-identifying mark, the device including a support for the ophthalmic lens, and on opposite sides of the support, firstly lighting element for lighting the ophthalmic lens along at least two different lighting directions, and secondly acquisition and analysis element for acquiring and analyzing the light transmitted by the ophthalmic lens, the analysis element being adapted to identify shadows of the mark when lighted in the at least two lighting directions, and to deduce from their positions a measured value for the camber geometrical characteristic of the ophthalmic lens.
摘要:
The relative position of a test surface is sequentially changed from a reference position where a surface central axis is aligned with a measurement optical axis such that the measurement optical axis is sequentially moved to a plurality of annular regions obtained by dividing the test surface in a diametric direction. The test surface is rotated on a rotation axis whenever the relative position is changed. Measurement light that travels while being converged by a Mirau objective interference optical system is radiated to the rotating test surface, and a one-dimensional image sensor captures interference fringes at each of a plurality of rotational positions. The shape information of each annular region is calculated on the basis of the captured interference fringes at each rotational position, and the shape information is connected to calculate the shape information of the entire measurement region.
摘要:
A system comprising a plurality of methods for measuring surfaces or wavefronts from a test part with greatly improved accuracy, particularly the higher spatial frequencies on aspheres. These methods involve multiple measurements of a test part. One of the methods involves calibration and control of the focusing components of a metrology gauge in order to avoid loss of resolution and accuracy when the test part is repositioned with respect to the gauge. Other methods extend conventional averaging methods for suppressing the higher spatial-frequency structure in the gauge's inherent slope-dependent inhomogeneous bias. One of these methods involve averages that suppress the part's higher spatial-frequency structure so that the gauge's bias can be disambiguated; another method directly suppresses the gauge's bias within the measurements. All of the methods can be used in conjunction in a variety of configurations that are tailored to specific geometries and tasks.
摘要:
Interferometric scanning method(s) and apparatus for measuring test optics having aspherical surfaces including those with large departures from spherical. A reference wavefront is generated from a known origin along a scanning axis. A test optic is aligned on the scanning axis and selectively moved along it relative to the known origin so that the reference wavefront intersects the test optic at the apex of the aspherical surface and at one or more radial positions where the reference wavefront and the aspheric surface intersect at points of common tangency (“zones”) to generate interferograms containing phase information about the differences in optical path length between the center of the test optic and the one or more radial positions. The interferograms are imaged onto a detector to provide an electronic signal carrying the phase information. The axial distance, ν, by which the test optic is moved with respect to the origin is interferometrically measured, and the detector pixel height corresponding to where the reference wavefront and test surface slopes match for each scan position is determined. The angles, α, of the actual normal to the surface of points Q at each “zone” are determined against the scan or z-axis. Using the angles, α, the coordinates z and h of the aspheric surface are determined at common points of tangency and at their vicinity with αmin≦α≦αmax, where αmin and αmax correspond to detector pixels heights where the fringe density in the interferogram is still low. The results can be reported as a departure from the design or in absolute terms.
摘要:
An apparatus for measuring the eccentricity of the aspherical surface has a light source unit; a condenser lens condensing light rays in the proximity of the center of paraxial curvature of a surface to be examined, of an aspherical lens; an angle changing means for entering the rays on the surface to be examined, at angles θ1i (i=1, 2, . . . , N) with an optical axis; a holding tool of the aspherical lens; a light-splitting element; an imaging lens; a light-detecting element detecting the situation of light collected by the imaging lens; and an arithmetical unit. The arithmetical unit is such as to calculate the amount of eccentricity of the surface to be examined, from amounts of shift ΔP1i (i=1, 2, . . . , N) between spot positions P1i (i=1, 2, . . . , N) based on the design data of the surface to be examined and spot positions P1mi (i=1, 2, . . . , N) derived from the light-detecting element, with respect to light rays Q1i (i=1, 2, . . . , N) produced by the angle changing means.
摘要:
Interferometric scanning method(s) and apparatus for measuring optics either having aspherical surfaces or that produce aspherical wavefronts. A test optic is aligned and moved with respect to a scanning axis relative to the origin of a known spherical wavefront that is generated with a reference surface to intersect the test optic at the apex of the aspherical surface and at radial zones where the spherical wavefront and the aspheric surface possess common tangents. The test surface is imaged onto a space resolving detector to form interferograms containing phase information about the differences in optical path length between the reference surface and the test surface while the axial distance which the test optic moves relative to the spherical reference surface is interferometrically measured. The deviation in the shape of the aspheric surface from its design in a direction normal to the aspheric surface is determined and reported.
摘要:
An automated apparatus and method for measuring properties of optical components based on wavefront sensing and analysis. A wavefront of predetermined profile is directed at a surface to be measured so that it is more or less distorted in accordance with the shape of the surface and the distorted wavefront is sensed and analyzed. From the information derived from the distorted wavefront and other knowledge of the relationship between the surface and position of the wavefront of predetermined profile, the shape of the surface may be inferred along with other properties such as radius of curvature, focal length, conic constants, asphericity, toricity, tilt, and decentering. Concave, convex, cylindrical, and flat parts may be measured along with wavefront errors in bandpass transmitting components such as lenses, filters, and windows.
摘要:
A system for interferometric fit testing of a specimen having an aspherical surface in reflection, the specimen being a segment (2) (footprint) of a rotationally symmetrical basic body (1) (parent), comprises an interferometer (3) and a diffractive optical element (DOE) (5). An optical axis of the interferometer (3) in the beam direction behind the diffractive optical element (5) and an axis of rotation of the basic body (1) form an angle that differs from zero. The diffractive optical element (5) is designed in such a way that the rays produced by the interferometer (3) and falling into the diffractive optical element (5) strike the specimen (2) perpendicularly and from there run back in themselves.
摘要:
A method of manufacturing a projection optical system (37) for projecting a pattern from a reticle to a photosensitive substrate, comprising a surface-shape-measuring step wherein the shape of an optical test surface (38) of an optical element (36) which is a component in the projection optical system is measured by causing interference between light from the optical surface (38) and light from an aspheric reference surface (70) while the optical test surface (38) and said reference surface (70) are held in integral fashion in close mutual proximity. A wavefront-aberration-measuring step is included, wherein the optical element is assembled in the projection optical system and the wavefront aberration of the projection optical system is measured. A surface correction calculation step is also included wherein the amount by which the shape of the optical test surface should be corrected is calculated based on wavefront aberration data obtained at the wavefront-aberration-measuring step and surface shape data obtained from the surface-shape-measuring step. The method also includes a surface shape correction step wherein the shape of the optical test surface is corrected based on calculation performed at the surface correction calculation step. Surface shape measuring interferometer systems and wavefront-aberration-measuring interferometer systems (22J-22Q) used in performing the manufacturing method are also disclosed.