Abstract:
A method for testing internal differences in reinforced flexible composites including placing a flexible composite on a rigid support structure, tapping the composite with a tapper of predetermined mass, determining a value representative of the impact duration of the tap and/or computing a value representative of the local stiffness of the composite. The composite may be a power transmission belt or portion thereof with tensile cord reinforcement. The method is useful for comparing the degree of penetration of elastomer into the tensile cord, for example in a cast polyurethane toothed belt.
Abstract:
The length of the polycrystalline silicon rod (100) is measured with a tape measure, then the polycrystalline silicon rod (100) is hit with a hammer (120), and this hammering sound is recorded in a recorder (140) through a microphone (130). Then, an acoustic signal of the hammering sound is subjected to a fast Fourier transform and a frequency distribution is displayed. Furthermore, a peak frequency f is detected which shows the largest sound volume in the frequency distribution obtained after the fast Fourier transform. The relationship between the length (L) of the polycrystalline silicon rod and the peak frequency f is obtained, and the firmness of the polycrystalline silicon rod is determined on the basis of whether or not the peak frequency f is in a range of f≧1,471/L (region A).
Abstract:
A method of measuring damping of a work piece is provided. The method includes exciting the work piece, measuring a dynamic response of the work piece with an optical imaging system and calculating a damping factor and a Q factor from said dynamic response. The method links two processes: an optical imaging system to out put dynamic motion response data, and using the data to obtain a damping factor and a Q factor.
Abstract:
A wind turbine blade tester includes a pair of linearly reciprocable actuators, such as hydraulic actuators. Each of the actuators is arranged to deliver a stroke to a wind turbine blade being tested. The stroke delivered by each of the actuators provides a controlled force in both the edgewise and flapwise directions. A method for testing a wind turbine blade is also disclosed.
Abstract:
There is disclosed an assembly, a system and a method for modal impart testing. The assembly has a first set of components. The first set of components include an impact assembly, a cycle control element coupled to the impact assembly, and a signal response measuring device positioned opposite the impact assembly. The assembly further has a second set of components separate from the first set of components. The second set of components include a first controller coupled to the cycle control element and a second controller coupled to the signal response measuring device. The first set of components and the second set of components form a modal impact testing assembly for modal impact testing. The impact assembly of the modal impact testing assembly is configured to impact a test element rotating at operational speeds.
Abstract:
There is provided an electrodynamic modal test impactor system and method. The system has a controller device and an impactor assembly coupled to the controller device. The impactor assembly has a housing and a permanent magnet positioned within the housing. The impactor assembly further has a voice coil positioned within the housing in a magnetic gap of a magnetic yoke housing. The voice coil is driven by the controller device. The impactor assembly further has a drive shaft supported by two or more support elements. The drive shaft is attached to the voice coil and is driven by the voice coil. The impactor assembly further has a load cell attached to a free end of the drive shaft and a biasing device positioned within the magnetic yoke housing.
Abstract:
A mount assembly for compression testing of an article of apparel on a compression testing machine. The machine has a head and a sensor. The mount assembly includes a substantially rigid core member and a resilient member that is supported on and that at least partially covers the cover member. The resilient member is configured to support the article of apparel thereon. The resilient member is configured to resiliently deform in response to a compression applied to the article of apparel from the head of the impact testing machine. As such, the sensor detects an effect of the compression on at least one of the resilient member and the core member.
Abstract:
A fracture determination method for determining a fracture of a metal structure includes, when a fracture determination target portion has returned from a plastic state to an elastic state, given that a stress when the portion returned to the elastic state is (x, y)=(σ2, σ1) (maximum principal stress: σ1, minimum principal stress: σ2) on a (x, y) coordinate plane, performing fracture determination of the fracture determination target portion using a re-yield stress R determined by the intersection between a straight line satisfying a relation y=(σ1/σ2)x and an yield curve obtained from the plastic state of the fracture determination target portion. Fracture determination can be performed with high accuracy even when the fracture determination target portion has returned from a plastic state to an elastic state.
Abstract:
Methods and apparatus for identifying the location of the load on a structure. Various embodiments include calculating a plurality of potential loading sites, assessing the statistical order of each of those predictions, and selecting regions of the structure where the load most likely occurred based on the orderliness (or randomness) of the assessments.
Abstract:
A trunk skeleton of a human body dummy includes a spine portion, the spine portion including a plurality of vertebra portions made of metal-based materials or synthetic resin-based materials, a plurality of intervertebral buffer portions disposed between the vertebra portions, the intervertebral buffer portions being made of synthetic resin-based materials, and a bone-coupling portion coupling the vertebra portions in a displaceable manner, the bone-coupling portion including a metal-based rod-shaped member; and a thorax portion, the thorax portion including a plurality of costa portions having first ends coupled to the respective vertebra portions of the spine portion, thus forming respective pairs for the vertebra portions, the costa portions being made of synthetic resin-based materials, and a sternum body coupled to second ends of the costa portions, the sternum body being made of a synthetic resin-based material.