Abstract:
A method of measuring millisecond-scale blast and impact characterization in soft materials includes embedding one or more sensors in soft material, wherein the one or more sensors have mechanical properties approximately matching the soft material; applying a constant current to the one or more sensors; subjecting the soft material to a shock or impact event; measuring a response as a change in voltage; and converting the measured voltage to strain or pressure.
Abstract:
The present invention relates to the technical field of equipment for impact tests; more specifically, to an instrumented pendulum for Charpy-type impact tests on miniaturized samples. The instrumented pendulum (1) for miniaturized Charpy impact test, according to the present invention, is characterized in that it comprises a main monolithic part, a cleaver (7) housed in an anterior opening of the main monolithic part, and the at least two additional plates (11, 12) removably attached to the respective sides of the main monolithic part of the instrumented pendulum (1). Further, the present invention relates to a Charpy impact machine comprising the instrumented pendulum (1) and an automatic device (6) for releasing the instrumented pendulum (1) at different values of firing angle.
Abstract:
A vehicle windshield testing assembly includes a test table, a plurality of supports, a vehicle windshield, and a testing fixture. The test table is configured to be adjustable about a first axis and a second axis. The plurality of supports is movably connected to the test table. The vehicle windshield is supported by the plurality of supports. The testing fixture supported by the plurality of supports. The testing fixture includes a plurality of hollow sleeves configured to receive a testing object. Each of the hollow sleeves has an opening facing the vehicle windshield.
Abstract:
A handheld quality inspection tool for projection welded components and method for utilizing the same is disclosed. The handheld quality inspection tool includes an elongated hollow tube, a spring support, a spring member, a plunger, and a handle. The elongated hollow tube defines a slot. The spring support is connected to an end portion of the elongated tube. The spring member is disposed within the elongated hollow tube and connected to the spring support. The plunger is disposed in the elongated hollow tube and connected to the spring member opposite the spring support. The handle is connected to the plunger and protrudes from the elongated hollow tube through the slot and is translatable along the slot to move the plunger and compress the spring member. Upon release of the handle, the compressed spring member propels the plunger to apply an impact force to a projection welded component.
Abstract:
Disclosed herein are systems, methods, and devices for implementing protective gear testing platforms. Systems may include a support structure and a pendulum coupled to the support structure via a first coupling. The pendulum may be configured to be positioned at a first position, and further configured to swing along a pathway in a first direction when released from the first position. Systems may also include a first headform coupled with the pendulum, where the first headform is configured to measure a plurality of forces associated with an impact on the first headform. The systems may also include a base stage configured to be coupled with a target, and further configured to position the target within the pathway.
Abstract:
A destructive inspection method of a vitreous silica crucible for pulling a silicon single crystal evaluates a crack state of an inner surface of the vitreous silica crucible supported by a graphite susceptor when a load is instantaneously applied to at least one point on the inner surface via an automatic center punch while pushing the tip portion of the automatic center punch against the inner surface. The destructive inspection method can inspect the vitreous silica crucible under conditions as close to the actual conditions of use as possible.
Abstract:
There is provided an apparatus for compression testing. The apparatus has a base assembly having an end load element attached to the base assembly, the base assembly being rigid. The apparatus has a support assembly attached to the base assembly, and having a plurality of window portions. The apparatus has a core assembly installed within the support assembly, the core assembly being crushable and configured to protect the support assembly and the base assembly from fracture loads generated during compression testing. The base assembly, the support assembly, and the core assembly together form an apparatus for compression testing of a test specimen having a notch portion. The apparatus is configured for use with an optical strain measurement system. When the test specimen is installed in the support assembly, the test specimen and the notch portion are visible to the optical strain measurement system through the plurality of window portions.
Abstract:
The method for evaluating the compactness of a layer of railroad ballast near a railroad tie includes at least one step of taking at least two measurements (11,11a,11b) of the penetration resistance (Qd) of the ballast (13) near one and the same railroad tie (10), and a step of calculating the mean value (Qdmean) of these measurements (11,11a,11b) of penetration resistance.Also provided are a device for implementing such a method and a method for predicting the settlement of the ballast of a railroad track including a step of evaluating the compactness of a ballast near a railroad tie.
Abstract:
An alignment apparatus for aligning a test panel with a testing machine may include a laser measuring system and an adjustment mechanism. The laser measuring system may include at least one laser measuring device coupled to a test fixture and/or a testing machine. The laser measuring system may generate laser measurement data representative of an orientation of a test panel relative to a platen and/or a loading axis of the testing machine. The adjustment mechanism may adjust, based on the laser measurement data, a location and/or orientation of the test panel relative to the platen and/or the loading axis in a manner such that the test panel is moved into substantially alignment with the platen and/or the loading axis.
Abstract:
A system (100) for determining a property of an object (106) comprises an inducing arrangement (102), a detector (104) and a processor. The inducing arrangement (102) is configured to generate an impulse of fluid and for directing the impulse of fluid towards the object to induce a physical vibration of the object (106). The inducing arrangement (102) does not contact the object 106 when inducing the physical vibration of the object (106). The detector (104) is configured to detect the physical vibration of the object (106). The detector (104) does not contact the object 106 when detecting the physical vibration of the object (106). The processor is coupled to the detector (104) for determining the property of the object (106) based on at least the detected physical vibration.