Abstract:
The frequency resolution of a direct digital synthesizer is increased by varying the phase increment used to accumulate wave lookup table addresses between two integer values. The time periods during which the larger integer value is employed is proportional to a fractional part of the desired phase increment for providing an analog output at a selected frequency.
Abstract:
A phase accumulator for accumulating digital frequency words, which, as accumulated, represent the phase of a cyclic waveform of a predetermined frequency. The phase accumulator includes a coarse-component accumulator for accumulating coarse phase components of the digital frequency words; a fine-component accumulator for accumulating fine phase components of the digital frequency words; and means for incrementing the coarse-component accumulator in response to accumulation of the fine phase components. The incrementing means include means for providing a variable randomly generated value for each fine-component accumulation cycle; means for periodically sampling the accumulation of the fine phase components in relation to the randomly generated value; and means for incrementing the coarse component register for each fine-component accumulation cycle, with the phase of said incrementing being dithered in accordance with the number of times the accumulated fine phase components exceed the randomly generated values during the sampling period.
Abstract:
An electrical waveform generator provides a memory for storing a plurality of data points representing sequential amplitude values of a desired waveform, a digital-to-analog converter for converting the data points to analog voltages for generating the desired waveform and apparatus for selectively coupling the data points to the converter, including apparatus for selecting groups of data points and for selectively looping through the groups.
Abstract:
A programmable sound synthesizer, controlled by a microprocessor, can be fabricated according to the present invention to provide arbitrary programmability with respect to the waveform of an audible tone, frequency, amplitude, envelope shape of the wave train, including attack, sustain and the decay intervals of the envelope, rest or space intervals between notes as well as arbitrary selection of the note within an ordered sequence. A plurality of binary numbers, which in sequence are indicative of the waveform of the tone to be generated, can be read from a memory at a rate which defines the frequency of the waveform. The memory is read by an address generator whose repetition rate is controlled by an integrater. The rate of integration is in turn controlled by a tone number which is programmed into an appropriate register coupled to the integrater. Envelope and amplitude information may also be programmed into corresponding registers. The waveform memory, envelope register and amplitude register are each coupled to the central processor and read synchronously to generate the complex selected tone.
Abstract:
A modular signal processor which is assembled from a set of modules which have common input and output timing specifications such that any one module can be interconnected with any other module to perform a desired signal processing operation under the control of a timing generator. The timing generator is arranged to produce a clock signal of relatively high frequency and sequences of timing signals at a relatively lower frequency. Data is loaded into a module in response to a first one of the timing signal. The module then performs its operation or function upon the data to provide a result data. The result data is then read from the module in response to a subsequently occurring timing signal which is also employed to load the result data into another module. Specifically disclosed herein is a frequency synthesizer processor which employs the following modules: binary coded decimal to binary converter, phase accumulator, look up table and a digital to analog converter and filter.
Abstract:
In an electronic organ, the actuation of keys in accordance with corresponding audible tones to be reproduced effects the gating of pulses into time slots of a time division multiplexed signal, the time slots of the multiplexed signal being structured in accordance with a desired assignment sequence to correspond to the keys and to be representative thereof for identifying each note capable of being generated by the organ. A set of note, or tone, generators with availability assignment control means for capturing a pulse in the multiplexed signal are each rendered responsive to a given captured pulse for generating the tone represented by that pulse. The appropriate tone is generated digitally in the form of amplitude samples of a waveform stored in a memory, and the amplitude samples are subsequently subjected to digital-to-analog conversion for ultimate production of the audible output of the organ. Attack and decay of the tone, or note, waveform envelope are simulated by appropriately scaling the amplitude samples at the leading and trailing portions of the waveform envelope.
Abstract:
A signal generator for producing periodic signals for a measuring apparatus of automation technology. The signals have sequential, discrete signal frequencies, which lie within a predetermined frequency range. A control- and/or computing unit, a clock signal producer are provided, wherein the clock signal producer provides a constant sampling frequency, which is greater than the maximum discrete signal frequency in the predetermined frequency range. A memory unit is provided, in which for each of the discrete signal frequencies the amplitude values of the corresponding periodic signals are stored or storable as a function of the sampling frequency. The control- and/or computing unit reads out the stored or storable amplitude values of the discrete frequencies successively with the sampling frequency of the clock from the memory unit and produces the periodic signals, or forwards for producing. A static filter unit, is also provided with a limit frequency, which lies above the maximum signal frequency and which removes frequency fractions caused by the sampling.
Abstract:
A sine wave generating apparatus comprises: a phase accumulating module, configured to acquire configuration information of a sine wave, and generate address information comprising integer address information and decimal address information; a value searching module, configured to search for first data information and second data information of the sine wave according to the integer address information; an interpolation module, configured to conduct interpolation between the first data information and the second data information, and acquire interpolation original data information of the sine wave according to the decimal address information; a random truncating module, configured to conduct truncation processing on the interpolation original data according to the bit width of the decimal address information and a pseudorandom sequence output value to acquire final interpolation data information of the sine wave; and a sine wave generating module, configured to generate image information of the sine wave according to the final interpolation data information of the sine wave.
Abstract:
Provided are, among other things, systems, apparatuses methods and techniques for generating discrete-time sinusoidal sequences. One such apparatus includes a plurality of parallel processing branches, with each of the parallel processing branches operating at a subsampled rate and utilizing a recursive filter to generate sub-rate samples which represent a different subsampling phase of a complete signal that is output by the apparatus.
Abstract:
Systems and methods for a split phase accumulator having a plurality of sub phase accumulators are provided. Each sub phase accumulator receives a portion of a frequency control word. The first sub phase accumulator includes a first register and the remaining sub phase accumulators include a register and an overflow register. At each discrete point in time, the first sub phase accumulator is configured to be responsive to the first portion of the frequency control word at that discrete point in time and to the first sub phase accumulator value at the immediately previous discrete point in time, and each of the remaining sub phase accumulators is configured to he responsive to a value of its corresponding portion of the frequency control word at that discrete point in time and to the same second sub phase accumulator value at the immediately previous discrete point in time.