摘要:
An apparatus encodes data blocks into code blocks, each code block containing more symbols than its respective data block. The apparatus includes a data block latch for receiving individual data blocks and for dividing each data block into two sub-blocks. An encoder receives one of the data sub-blocks and encodes the first data sub-block as a code sub-block. An interleaver, coupled to the encoder and the data block latch, combines the code sub-block with the second data sub-block to produce a code block, such that when the code blocks are concatenated with each other to produce a string of code symbols no more than five consecutive occurrences of a particular code symbol are present in the string of code symbols.
摘要:
A modulation method generates a rate 16/17 (d=0, G=7/I=11) modulation code for transferring user digital data bytes having a three-way ECC interleave through a data transfer channel in accordance with the steps of: shuffling the user data bytes in order to rearrange an order of the bytes in a predetermined manner and putting out A.sub.i B.sub.i byte pairs, encoding eight bits of the Ai bytes of the AiBi byte pairs in accordance with a predetermined rate 8/9 modulation code to produce nine code bits a0-a8, and interleaving the nine code bits a0-a8 of each Ai byte with eight unencoded bits of each Bi byte in accordance with a predetermined bitwise interleave pattern to generate the rate 16/17 modulation code. A preferred code and circuitry for the modulation method are also described.
摘要:
Method and computer program product are provided to encode data for recording onto media whereby modulation and linear constraints from a concatenated code or product code are imposed. A first array of unencoded user data is generated. Each row is modulation encoded to enforce a first modulation constraint; the array is transformed into a second array which is transformed into a third array having predetermined empty locations in each column interleaved with the modulated data. A C2-parity byte is computed for at least some of the empty locations of the third array and a fourth array is generated. C1-parity symbols in each row are computed, generating a fifth array. A second modulation constraint is enforced on each C1-parity symbol in each row of the fifth array, generating a sixth array. The rows of the sixth array are assembled with header and sync fields for recording onto a recording media.
摘要:
For writing data to multi-track tape, a received data set is received and segmented into unencoded subdata sets, each comprising an array having K2 rows and K1 columns. For each unencoded subdata set, N1−K1 C1-parity bytes are generated for each row and N2−K2 C2-parity bytes are generated for each column. The C1 and C2 parity bytes are appended to the ends of the row and column, respectively, to form encoded C1 and C2 codewords, respectively. All of the C1 codewords per data set are endowed with a specific codeword header to form a plurality of partial codeword objects (PCOs). Each PCO is mapped onto a logical data track according to information within the header. On each logical data track, adjacent PCOs are merged to form COs which are modulation encoded and mapped into synchronized COs. Then T synchronized COs are written simultaneously to the data tape where T is the number of concurrent active tracks on the data tape.
摘要:
An unencoded m-bit data input sequence is divided into a block of n bits and a block of m−n bits. The block of n bits is divided into a first set of n+1 encoded bits, wherein at least one of P1 subblocks of the first set satisfies a G, M and I constraints. The first set of n+1 encoded bits is mapped into a second set of n+1 encoded bits wherein at least one of P2 subblocks of the second set gives rise to at least Q1 transitions after 1/(1+D2) preceding. A second set of n+1 encoded bits is divided into P3 encoded subblocks and the P3 encoded subblocks are interleaved among (m−n)/s unencoded symbols so as to form a (m+1)-bit output sequence codeword which is then stored on a data storage medium.
摘要:
Provided are a rate 13/15 MTR code encoding/decoding method and apparatus. The encoding method includes: generating a predetermined rate-13/15 MTR code in which 13-bit data corresponds to 15-bit data; outputting input 13-bit data as a 15-bit codeword according to the rate-13/15 MTR code; checking whether codewords satisfy a predetermined constraint condition by connecting the 15-bit codeword and a subsequent 15-bit codeword; and converting specific bits of the codewords if the codewords violate the constraint condition and not converting the codewords if the codewords do not violate the constraint condition. The rate-13/15 MTR (j=2, k=8) code includes: 8192 codewords obtained to prevent the number of consecutive transitions from becoming 3 at code boundaries in a modulation coding process. Data can be reliably reproduced with high write density, and a large amount of data can be stored in and reproduced from a magnetic recording information storage medium.
摘要:
An apparatus has a conversion circuit, a precoder circuit, and a selection circuit. The conversion circuit converts user data b1, b2, b3 . . . bk to a coded sequence c0, c1, c2 . . . cq. The selection circuit selects c0 in the coded sequence c0, c1, c2 . . . cq such that the output of the precoder circuit has less than a maximum number q of transitions. The conversion circuit may include an encoder circuit to convert user data b1, b2, b3 . . . bk to a sequence c1, c2 . . . cq, and a transition minimization circuit to add c0 to the sequence c1, c2 . . . cq. The apparatus may have a circuit to add at least one additional bit, which may be a parity bit, to the coded sequence c0, c1, c2 . . . cq.
摘要:
Provided is a method, system, and program for storing input groups of uncoded binary data on a storage medium. A plurality of uncoded data blocks in a data stream are received. An encoded data stream is obtained from concatenating successive encoded blocks such that the encoded data stream includes a predetermined bit pattern comprising a plurality of bits. The bit pattern always occurs within a first number of bits and two occurrences of a “1” or “0” occur within a second number of bits. The encoded data blocks are stored on the storage medium.
摘要:
Described is a modulation encoder having a finite state machine for converting input bits into output bits in which the number of alternating output bits is limited to j+1 where j is a predefined maximum number of transitions in the output bits, and in which the number of like output bits is limited to k+1 where k is a predefined maximum number of non-transitions in the output bits. The modulation encoder may be employed in encoding apparatus for converting an input bit stream into an output bit stream. Such apparatus may comprise partitioning logic for partitioning the input bit stream into a first group of bits and a second group of bits. A plurality of the aforementioned modulation encoders may be connected to the partitioning logic for converting the first group of bits into coded output bits. Combining logic may be connected to the or each modulation encoder and the partitioning logic for combining the coded output bits and the second group of bits to generate the output bit stream. Counterpart modulation decoders and decoding apparatus are also described.
摘要:
A magnetic recording and/or reproducing apparatus which achieves high performance encoding and high efficiency decoding to lower the decoding error rate. A magnetic recording and/or reproducing apparatus 50 includes, in its recording system, an error correction coder 51 for error correction coding input data and an interleaver 52 for scrambling the sequence of data supplied from the error correction coder 51. The magnetic recording and/or reproducing apparatus 50 also includes, in its reproducing system, s modulation and error correction turbo decoder 64 provided with a deinterleaver for scrambling and re-arraying the sequence of the input data such as to restore the sequence of input data re-arrayed by the interleaver 52 to an original bit sequence, an error correction soft decoder for decoding data supplied from the deinterleaver and with a second interleaver for scrambling and re-arraying the sequence of data given as a difference between data output from the error correction soft decoder and data output from the deinterleaver.