Abstract:
A therapeutic radiation source includes a spiral-shaped, laser-heated thermionic cathode. A fiber optic cable directs a beam of radiation, having a power level sufficient to heat at least a portion of the electron-emissive surface to an electron emitting temperature, from a laser source onto the cathode. The cathode generates an electron beam along a beam path by thermionic emission, and strikes a target positioned in its beam path. The target includes radiation emissive material that emits therapeutic radiation in response to incident accelerated electrons from the electron beam. The spiral-shaped conductive element has a plurality of spaced apart turns, and is disposed in a vacuum. An interstitial spacing is defined between adjacent turns, so that heat transfer across the spacing between each adjacent turn is essentially eliminated, thereby substantially reducing heat loss in the cathode caused by thermal conduction.
Abstract:
An apparatus and method for in-situ x-ray radiation treatment utilizes different types of miniature energy transducers to emit x-rays. Each type of energy transducer includes a transducer body, a cathode provided at one end of the transducer body, and an anode provided at another end of the transducer body. The transducer body, cathode and anode define a cavity that communicates with an evacuation opening. A desired vacuum is achieved and maintained by a dynamic pumping mechanism that draws a vacuum in the cavity via the evacuation opening.
Abstract:
An X-ray tube includes an evacuated envelope; a cold cathode mounted at one end of the envelope and capable of field emission of electrons when subjected to a high electrostatic field; and an anode mounted at the opposite end of the envelope coaxial with and axially spaced from the cathode, and capable of emitting X-rays when struck by electrons emitted by the cathode. The envelope includes an end wall made of thermally-conductive and electrically-insulating material in contact with the anode and formed with a fluid cooling channel to remove the heat generated at the anode. In one described embodiment, the cathode includes a body of a getter material which is both electron emissive and gas absorptive. In other described embodiments, the cathode includes a carbon nanotube field-emission electron source.
Abstract:
Miniature X-ray source comprising an insulation structure defining a cavity where an anode and a cathode are arranged, said cavity being evacuated, connecting means arranged to connect the anode and the cathode to a high voltage source in order to energise the X-ray source. The insulation structure includes a first layer and a second layer, the first layer facing the cavity and has a low gas permeability, and the second layer is arranged outside said first layer and has a high electrical break-through voltage. The electrical break-through voltage for the insulation structure is above a predetermined threshold value.
Abstract:
A vascular X-ray probe is formed of an optical fiber cable with a high voltage conductor embedded in the optical fiber and an external ground coating, feeding power to a small X-ray tube at the end of the cable. The optical fiber provides a conduit for optical radiation, preferably a laser beam, fed to a thermionic cathode mounted at the end of the light path, so that the laser beam heats the cathode causing it to emit electrons. An anode/X-ray target is opposite the cathode within the evacuated X-ray tube, and the ground lead is fed to the anode via an external ground coating over the tube. The X-ray tube is in preferred embodiments is less than 3 mm in diameter, and more preferably about 1.5 mm. In one embodiment the tube is formed directly in the end of the optical fiber cable, with the anode mounted on an exit window.
Abstract:
This invention is directed to a radiation source comprising a power supply, a flexible fiber optic cable assembly, a light source, and a target assembly. The power supply includes a first terminal and a second terminal, and elements for establishing an output voltage between the first terminal and the second terminal. The flexible fiber optical cable assembly has an originating end and a terminating end, and includes a fiber optical element extending from the originating end to the terminating end. The cable is adapted for transmitting light incident on the originating end to the terminating end. The light source includes elements for generating a beam of light at and directed to the originating end of the fiber optical cable assembly. The target assembly is affixed to the terminating end of the fiber optical cable assembly and is electrically coupled to the power supply by way of the first terminal and the second terminal. The target assembly includes elements for emitting radiation in a predetermined spectral range, in response to light transmitted to the terminating end.
Abstract:
An apparatus dedicated to taking diagnostic quality images to confirm the accuracy of radiotherapy treatments. The apparatus is sufficiently compact to be used in the existing treatment heads of linear accelerators capable of delivering both electron and x-ray radiation. A compact electron drift tube is made long enough to penetrate the substantial shielding of a linear accelerator, thereby obviating the need to locate the entire generating device within the head of the machine. The diameter of the drift tube of the present invention is made small enough to penetrate the shielding without causing undue leakage of radiation.
Abstract:
An apparatus and method for exposing a treatment site in a patient to x-ray radiation is described that uses a pulse voltage source, where the x-ray emitter employs a cold cathode. The invention may further include a current sensor for measuring a current through the x-ray emitter, and, optionally, a current integrator connected to the current sensor. Each voltage pulse may be discontinued when a predetermined amount of charge has passed through the emitter. The step of moving an x-ray emitter past a treatment area at a rate determined by the amount of charge that has passed through the emitter is also described. The present invention also includes an x-ray emitter device with rectangular voltage pulses added to a base direct current voltage. Another step of the invention may be applying a voltage pulse cycle to the x-ray emitter where a duration of the pulse is 2-5 times lower than a thermal relaxation time of an emitter.
Abstract:
Methods and means for reduced ng the overall diameter of an x-ray tube by recessing the vacuum pumping port stub within the ground plane of the x-ray tube without adversely affecting the electrostatic fields within the vacuum tube itself are provided. In one embodiment, x-ray tubes of smaller diameter, which can be used within the highly confined diameters typically found within the pressure housings of borehole tools are used.
Abstract:
A microminiature X-ray tube with a triode structure using a nano emitter is provided, which can increase a field emission region as much as possible by means of nano emitters fine-patterned in a cathode to not only increase an emission current per unit area as much as possible but secure high electrical characteristics, reliability, and structural stability by means of a cover and a bonding material. In addition, gate holes having a macro structure can be formed in the gate to promote electron beam focusing by means of the gate without using a separate focusing electrode and to prevent a leakage current from occurring on the gate. Further, an auxiliary electrode can be formed on a top or an inner surface of a cover applied for structural stability to further promote the electron beam focusing and to control the output amounts per individual X-ray tubes output.