Abstract:
The present invention relates to an X-ray tube with non-evaporable getters disposed therein for maintaining a degree of vacuum sufficient to operate the X-ray tube. The present invention provides a fixed-anode X-ray tube and a rotating-anode X-ray tube in which non-evaporable getters are disposed. The X-ray tubes, even when rated power is introduced without an aging process, can perform gas adsorption sufficiently and stably during operation, despite gases that can be generated by the filament and the cathode focusing cap and gases that can be generated by the target.
Abstract:
A cathode structure comprising a getter material provided with a diamond film. The getter material may include zirconium, vanadium and iron. Cathode structures may have a substantially rounded configuration including a substantially straight portion. Other cathode structures may have a substantially flat portion, with the diamond film covering essentially the entire flat surface. Methods of manufacturing cathode structures may include conditioning the cathode structure by applying a voltage.
Abstract:
In a radiation tube, a conductive member having an opening formed therein is disposed, and a dielectric is disposed in the conductive member. Thus, foreign matter that has entered the conductive member through the opening is trapped by the dielectric. As a result, discharge due to foreign matter can be reduced.
Abstract:
The present disclosure relates to an electric field emission x-ray tube apparatus equipped with a built-in getter, and more particularly, to an electric field emission x-ray tube apparatus equipped with a built-in getter that makes it possible to reduce the size of an x-ray tube by forming a stacked structure, with electric insulation and predetermined gaps maintained for each electrode, by manufacturing an x-ray tube having a stacked structure by inserting insulating spacers (for example, ceramic) between an exhausting port, a cathode, a gate, a focusing electrode, and an anode and bonding them with an adhesive substance, and then inserting a spacer between a field emitter on a cathode substrate and a gate hole connected with a gate electrode.
Abstract:
The present disclosure relates to an electric field emission x-ray tube apparatus equipped with a built-in getter, and more particularly, to an electric field emission x-ray tube apparatus equipped with a built-in getter that makes it possible to reduce the size of an x-ray tube by forming a stacked structure, with electric insulation and predetermined gaps maintained for each electrode, by manufacturing an x-ray tube having a stacked structure by inserting insulating spacers (for example, ceramic) between an exhausting port, a cathode, a gate, a focusing electrode, and an anode and bonding them with an adhesive substance, and then inserting a spacer between a field emitter on a cathode substrate and a gate hole connected with a gate electrode.
Abstract:
An X-ray tube (1) comprising a cathode (3), an anode (5) and a further electrode (7) is proposed. Therein, the further electrode is arranged and adapted such that, due to impact of ‘free electrons (27) coming from the anode (5), the further electrode (7) negatively charges to an electrical potential lying between a cathode's potential and an anode's potential. The further electrode (7) may be passive, i.e. substantially electrically isolated and not connected to an active external voltage supply. The further electrode (7) may act as an ion pump removing ions from within a primary electron beam (21) and furthermore also removing atoms of residual gas within the housing (11) of the X-ray tube (1). In order to further increase the ion pumping capability of the further electrode (7), a magnetic field generator (61) can be arranged adjacent to the further electrode (7).
Abstract:
A miniature X-ray source device connected to a distal end of a guiding wire for insertion towards a desired location within an animal body for effecting radiation thereby. The X-ray source device at least includes a vacuum tube containing a cathode and an anode spaced apart at a distance from each other; an emitter for emitting free electrons from the cathode; an electric field generator for applying a high-voltage electric field between the cathode and the anode for accelerating the emitted free electrons towards the anode; and a getter material located in a high-voltage electric field free region in the vacuum tube. The vacuum tube is at least partly transparent to X-ray radiation emitted by the anode.
Abstract:
Generally, the present invention provides a device for insertion into a body of a subject being treated to deliver localized x-ray radiation, and a method for use of such a device. The device includes an anode and a cathode, disposed within a vacuum housing. The device further includes a balloon coupled to and circumferentially surrounding the vacuum housing, and a fluid loop for circulating a cooling fluid proximate to the vacuum housing. A method for delivering localized x-ray radiation to an interior passage of a body is also described, including the steps of positioning an x-ray device at the passage to be treated and applying a high voltage to the x-ray producing unit to produce localized x-ray radiation.
Abstract:
A toroidal x-ray tube housing (A) is composed of multiple sections which are clamped together and sealed by elastomeric gaskets (128). An annular anode (B) is mounted to the housing with coolant passages (12, 14) extending thereadjacent. A rotor (30) is rotated within the toroidal housing by a motor (60). At least one cathode assembly (C) is mounted to the rotor adjacent the anode. The rotor is supported by magnetic bearings (40) whose active coils are separated from the vacuum region by a magnetic window (48). Alternately, a series of vanes (136, 138) are provided to divide the vacuum chamber into a high vacuum region (132) adjacent the cathode and anode and a low vacuum region (134) adjacent the motor (60) and bearings (40, 150, 152) for rotatably supporting the rotor within the housing. An active vacuum pump, preferably a ion pump (112) and a getter (114) are hermetically sealed into the vacuum region for maintaining the vacuum.