Abstract:
An SOI substrate (30) comprises a buried oxide film (2), an SOI layer (3) formed on a first region (51) of the surface (2S) of the buried oxide film, and a silicon oxide film (8) formed on a second region (52) of the surface (2S). Formed on the peripheral portion of the SOI layer (3) is a silicon oxide film (6), the side surface (6H) of which is integrally joined to the side surface (8H) of the silicon oxide film (8). The thickness of the peripheral portion of the SOI layer (3) decreases as closer to the end portion (3H) of the SOI layer (3), while the thickness of the silicon oxide film (6) formed on the peripheral portion of the SOI layer (3) increases as closer to the end portion (3H). A gate oxide film (9) is formed on a predetermined region of the surface of the SOI layer (3), and joined to the silicon oxide film (6) at its end portion. A gate electrode (10) is then formed on the surface of the gate oxide film (9) and on a portion where the silicon oxide film (6) is integrally joined to the gate oxide film (9). In this manner, an SOI/MOSFET is obtained with no parasitic element formed at the end portion of the SOI layer.
Abstract:
Obtained is a method of manufacturing a semiconductor device which can take a body contact while electrically isolating an NMOS transistor and a PMOS transistor from each other through a complete isolation. First of all, element isolating films (7a to 7c) of a partial isolation type are formed in a first main surface of a silicon layer (3). Next, a PMOS transistor, an NMOS transistor, a multilayer wiring structure, a spiral inductor (20) and a pad (22) are formed, respectively. Then, a support substrate (23) is formed over the whole surface. Thereafter, a silicon substrate (1) and a BOX layer (2) are removed to expose a second main surface of the silicon layer (3). Subsequently, element isolating films (27a to 27d) connected to the element isolating films (7a and 7b) are formed on the second main surface side of the silicon layer (3). Consequently, a complete isolation can be obtained.
Abstract:
A method for forming an isolation region on a semiconductor substrate with a high yield, comprising partially covering the surface of a semiconductor substrate with an oxidation inhibitor film, depositing a material for side-wall parts on the oxidation inhibitor film and also on an exposed region of the surface, which is revealed through an opening of the oxidation inhibitor film, to form side-wall parts at the edge portions of the oxidation inhibitor film, then, removing by a plasma etching process the unnecessary portions of said side-wall material deposited on the oxidation inhibitor film and on the exposed region of the substrate and leaving intact the side-wall parts at the edge portions of the oxidation inhibitor film, and cleaning the exposed region on the surface of the semiconductor substrate, revealed through the opening of the oxidation inhibitor film, before subsequent heat treatment to generate a field oxide film.
Abstract:
A semiconductor device improved to suppress a leakage current of a transistor is provided. A gate electrode is disposed on a semiconductor substrate. A pair of p type source/drain layers are provided on the surface of the semiconductor substrate, on both sides of the gate electrode in the gate length direction Y. An n type gate width determining layer is provided on the surface of the semiconductor substrate to sandwich the source/drain layers in the width direction X of the gate electrode, which determines a gate width of the gate electrode. The source/drain layers and the gate width determining layer are isolated by PN junction.
Abstract:
A semiconductor device and manufacturing process therefor is provided in which angled dopant implantation is followed by the formation of vertical trenches in the silicon on insulator substrate adjacent to the sides of the semiconductor gate. A second dopant implantation in the exposed the source/drain junctions is followed by a rapid thermal anneal that forms the semiconductor channel in the substrate. Contacts having inwardly curved cross-sectional widths in the semiconductor substrate are then formed which connect vertically to the exposed source/drain junctions either directly or through salicided contact areas.
Abstract:
The present invention aims to provide a field effect transistor which inhibits an aggregation of silicon atoms attendant on heat treatment and has stable source/drain shapes. The field effect transistor according to the present invention is manufactured using a substrate on which a silicon layer, an buried oxide film (BOX film) and an SOI layer are stacked in order. The field effect transistor has an element isolation layer formed in the SOI layer and further includes visored portions provided so as to cover angular portions on the main surface side of an activation layer defined by the element isolation layer.
Abstract:
A semiconductor device and manufacturing process therefor is provided in which angled dopant implantation is followed by the formation of vertical trenches in the silicon on insulator substrate adjacent to the sides of the semiconductor gate. A second dopant implantation in the exposed the source/drain junctions is followed by a rapid thermal anneal which forms the semiconductor channel in the substrate. Contacts are then formed which connect vertically to the exposed source/drain junctions either directly or through salicided contact areas.
Abstract:
Certain embodiments relate to methods for making a semiconductor device that inhibit the formation of a parasitic device. A method for making a semiconductor device includes a delimiting step and a dopant implantation step. The delimiting step partially oxidizes a single-crystal silicon layer provided on a semiconductor substrate 11 with an insulating layer therebetween to form a plurality of isolated single-crystal-silicon-layer segments 13a delimited by the insulating layer 16. In the implantation step, dopant ions 18 are implanted into the single-crystal-silicon-layer segments 13a to activate the single-crystal-silicon-layer segments 13a. In this implantation step, the dopant is implanted into the single-crystal-silicon-layer segments 13a by an implantation energy which is set so that the position of the maximum of the dopant concentration lies at bottom edges Ea and Eb of each single-crystal-silicon-layer segment 13a.
Abstract:
The present invention relates to a device isolation structure and a device isolation method in a semiconductor power IC. The device isolation structure according to the present invention includes: a semiconductor substrate including a high voltage region and a low voltage region; a trench overlapping the high voltage device region of the semiconductor substrate and an interfacing region formed between the high voltage device region and the low voltage device region; a fourth insulating film, a fifth insulating film, and a conductive film sequentially layered in the trench; a first insulating film pattern formed on the semiconductor substrate including the trench; and field insulating films respectively formed on the trench and on a portion of an upper surface of the semiconductor substrate which is exposed out of the first insulating film pattern. The present invention has several advantages concerning manufacturing costs and reliability, some of which being achieved by forming a thermal oxide film in an empty space of the conductive film by which oxygen is permeated thereinto and thus restraining breakdown from being generated between high voltage devices at a high voltage.
Abstract:
A sidewall oxide layer and a sidewall insulation layer are formed to cover the edge portion of an SOI layer. A channel stopper region is formed in the vicinity of the edge portion of the SOI layer. A protruded insulation layer is formed on the channel stopper region. A gate electrode extends from a region over the SOI layer to the protruded insulation layer and the sidewall insulation layer. In this way, reduction in threshold voltage Vth of a parasitic MOS transistor at the edge portion of the SOI layer can be suppressed.