Abstract:
A method of manufacturing an elongate stack of interlocked laminae in a die assembly. The method includes the steps of stamping a first lamina having generally opposed first and second edges in the strip stock material, stamping at least one first interlock means for engaging another lamina in the first lamina, separating the first lamina from the strip stock material, placing the first lamina into the choke passageway, the first and second edges of the first lamina frictionally engaging the choke passageway, stamping a second lamina having first and second elongate edges in the strip stock material, stamping at least one second interlock means for engaging another lamina in the second lamina, at least partially engaging the first and second interlocking means, separating the second lamina from the strip stock material, placing the second lamina into the choke passageway, and frictionally engaging the choke passageway along the first and second elongate edges of only one of the first and second laminae.
Abstract:
Thin sheets of magnetic material are subjected to a pressing process to stamp many sheets of core pieces, and caulking projections defined in the core pieces are caused to go into connecting through holes defined in the core pieces for connecting and laminating to produce a laminated core. In lower layer of the core pieces having the caulking projections arranged in different positions seeing in plan, at least two sheets of core pieces and other core pieces having the connecting through holes are provided. The caulking projections defined in the core pieces have projecting length of at least twice of thickness of the core pieces, and are fitted in the connecting through holes, so that upper and lower laminated core pieces are unified.
Abstract:
A progressive stamping die assembly apparatus and method in which strip stock material advances in a first direction through the apparatus and substantially simultaneously with the strip stock movement, a transversely moveable die station moves in opposite second and third directions substantially perpendicular to the first direction to one of a plurality of predetermined positions.
Abstract:
A method of producing a laminated core of a stator of an electric motor, includes at least one laminated core of a stator formed by stacked sheet-metal laminates, which have mechanical individual poles and of poles connected in the circumferential direction of the stator, at least one pole shank and at least one pole shoe facing a rotor. The sheet-metal laminates are configured with indentations and protrusions and, as a result, the sheet-metal laminates form the laminated core of the stator by interengagement of the indentations and protrusions. The mechanical poles of the laminated core of the stator have windings, and webs are provided between the poles to connect the connected mechanical poles in the circumferential direction. The axial set-up of the sheet-metal laminates of the laminated core of the stator has a predeterminable alternating succession of poles with a connecting web and poles without a connecting web.
Abstract:
A laminated rotor for an induction motor has a plurality of ferro-magnetic laminations mounted axially on a rotor shaft. Each of the plurality of laminations has a central aperture in the shape of a polygon with sides of equal length. The laminations are alternatingly rotated 180° from one another so that the straight sides of the polygon shaped apertures are misaligned. As a circular rotor shaft is press fit into a stack of laminations, the point of maximum interference occurs at the midpoints of the sides of the polygon (i.e., at the smallest radius of the central apertures of the laminations). Because the laminates are alternatingly rotated, the laminate material at the points of maximum interference yields relatively easily into the vertices (i.e., the greatest radius of the central aperture) of the polygonal central aperture of the next lamination as the shaft is inserted into the stack of laminations. Because of this yielding process, the amount of force required to insert the shaft is reduced, and a tighter fit is achieved.
Abstract:
Magnetic materials which are divided into a plurality of blocks or divided corresponding to respective magnetic pole teeth are connected by means of thin portions. The respective magnetic pole teeth are wound continuously with wire without cutting the wire at the positions in which the thin portions are connected. When a stator is assembled, a plurality of blocks or magnetic pole teeth are disposed on a substrate by separating or bending the thin portions.
Abstract:
A plurality of strips formed with tooth portions and core back portions is punched from a single band of sheet steel. Next, a plurality of strips is stacked such that the tooth portions line up together and the core back portions line up together and the stacked plurality of strips is integrated to form a strip lamination. Then, the strip lamination is wound spirally and the wound strip lamination is integrated to obtain a stator core.
Abstract:
An object of the present invention is to provide a low cost, high performance, thin structure rotary motor for driving medium used in magnetic disk drive unit, optical disk drive unit or the like, in order to improve the productivity of terminating processing and the reliability of the coils. Magnetic materials which are divided to a plurality of blocks or divided corresponding to respective magnetic pole teeth are connected by means of thin portions. The respective magnetic pole teeth are wound continuously with wire without cutting the wire at the positions in which the thin portions are connected. When a stator is assembled, a plurality of blocks or magnetic pole teeth are disposed on a substrate by separating or bending the thin portions.
Abstract:
A device for constructing a laminated article, in particular for electrical use, having mutually superposed metal laminations provided with elements or clips for connecting the laminations together. The clips project from the surface of the laminations and are formed by deforming the laminations. The laminations include cavities, each arranged to house a clip, whereby the cavities and clips constitute coupling elements of male-female type. The clips are punched from a metal strip in a first station, die-cut and stacked in a second station and coupling cavities are formed in a third station which may be the same as the first station.
Abstract:
A rotor core is formed from a stack of laminations. The core includes a plurality of generally circular laminations in a stacked formation one on top of each other. Each lamination defines an axis collinear with an axis of each other lamination in the stacked formation. The laminations each have first and second surfaces and the stack is configured to define at least one inner lamination having laminations adjacent to both its first and second sides and outer laminations having laminations adjacent to only one of its first and second sides. Each lamination has a predetermined number of circumferencially equally spaced slots that define conductor receiving regions. Each inner lamination includes at least one interlocking projection extending from one of the first and second surfaces thereof, at a predetermined radial distance from the lamination axis. Each lamination further defines at least one projection receiving region formed therein for receiving a projection from an adjacent lamination. When viewing the laminations stacks parallel to the axis, the projections are engaged in their respective projection receiving regions so as to define a staggered path of projection and receiving region engagements through the lamination stack. This staggered path configuration defines an elongated, tortuous path having a length greater than a height of the stack for eddy currents through the lamination stack, to increase impedance of an eddy current path therethrough.