Abstract:
Disclosed are transverse and/or commutated flux machines and components thereof, and methods of making and using the same. Certain rotors for use in transverse and commutated flux machines may be formed to facilitate a “many to many” flux switch configuration between flux concentrating stator portions having opposite polarities. Other rotors may be formed from a first material, and contain flux switches formed from a second material. Yet other rotors may be machined, pressed, stamped, folded, and/or otherwise mechanically formed. Via use of such rotors, transverse and/or commutated flux machines can achieve improved performance, efficiency, and/or be sized or otherwise configured for various applications.
Abstract:
Disclosed are single- and poly-phase transverse and/or commutated flux machines and components thereof, and methods of making and using the same. Exemplary devices, including polyphase devices, may variously be configured with an interior rotor and/or an interior stator. Other exemplary devices, including polyphase devices, may be configured in a slim, stacked, and/or nested configuration. Via use of such polyphase configurations, transverse and/or commutated flux machines can achieve improved performance, efficiency, and/or be sized or otherwise configured for various applications.
Abstract:
A motor including a mounting shaft having a hollow channel and a bearing attached to each end, a cylindrical hub having a hollow core for the mounting shaft, and plural rows of plural Molded Magnetic Flux Channels with a hollow core and a channel forming a U-shaped recess and mounted the surface of the hub, each row corresponding to a motor phase. Each magnetic flux channel forms two pole pieces divided by the channel. The motor also includes plural phase windings, one passing through each row of plural Molded Magnetic Flux Channels, a rotating drum having plural rows of permanent magnets on an inner surface, each row pair corresponding to and aligned with one of the plural rows of Molded Magnetic Flux Channels. The rotating drum connected with the bearing, and drive electronics for driving the plural phase windings, wherein the plural Molded Magnetic Flux Channels increases torque and motor efficiency.
Abstract:
A transverse flux machine (TFM) includes a stator assembly that provides a plurality of U-shaped magnetic circuits placed circumferentially around a rotor assembly. The plurality of U-shaped magnetic circuits being comprised of a first stator segment, a second stator segment, and a plurality of stator yokes. The first stator segment and the second stator segment each have a plurality of poles spaced around a first circumference and a plurality of slots spaced around a second circumference opposite each of the plurality of poles. The plurality of stator yokes each have a first end sized to fit within one of the slots associated with the first stator segment and a second end sized to fit in one of the slots associated with the second stator segment. Positioning of the first and second ends of the stator yokes within the slots of the first and second stator segments, respectively, results in the creation of the plurality of U-shaped magnetic circuits, each magnetic circuit defined by one of the plurality of poles associated with the first stator segment, one of the yokes, and one of the plurality of poles associated with the second stator segment.
Abstract:
A single field rotor motor comprising a rotor mounted for rotation with respect to a stator. The stator has a plurality of stator poles each having a coil for creating a magnetic pole force. The rotor has a plurality of circumferentially spaced salient rotor poles formed thereon, wherein the flux within the rotor maintains a constant polarity. Magnetic means are provided for creating a pair of magnetic flux fields, wherein interaction of the pair of magnetic flux fields causes the magnetic flux fields to spray radially outward with respect to the rotor, thereby creating uniform magnetic polarity on the rotor poles. Circuit means are provided for alternately charging said stator coils to alternate the polarity of a given stator pole to alternately attract and repel said rotor poles to produce rotation of said rotor.
Abstract:
The motor, which is an incorporated N-phased motor, comprises a rotor having four or more poles with N-poles and S-poles being alternately arranged in the circumferential direction, a stator having a stator core in which magnetic circuits are magnetically separated within an electrical angle of 360°, and an (N−1) number (N is a positive integer) of windings. The motor is configured so that currents of the windings can effectively work on the magnetic circuits.
Abstract:
A monophase transverse circuit has two rows of cylindrical air gaps which are provided with conductors between terminal pairs of a machine of an EP 1 063 754 type. By anamorphic transformation according to figures, the terminal pairs are rotated at a quarter turn in order to come to FIG. 3d. A coil in the form of a flat double U-shaped arch remains global but having consequent terminals by defining meanders between terminals which are laterally introducible opposite to a meander and whose sheets are now progressively attacked on one row of cylindrical or flat air gaps, thereby balancing axial forces. Axial and opposite currents between adjacent slots convert a preceding ring-shaped flux into radial fluxes in the terminals by acting upon the rotor terminals with the same pitch and polarised by permanent magnets or/and winding or/and induction according to FR 2 852 166.
Abstract:
An electric generator 10 of the present invention comprises a permanent magnet 14, a coil 30, a yoke 20, and attracted means 19 composed of a plurality of attracted pieces 18 which are arranged radially around the rotation axis 12 and are magnetized by the permanent magnet 14. The permanent magnet 14, the coil 30, the yoke 20, and the attracted means 19 are mounted on the rotation axis 12 and the attracted pieces 18 that constitute the attracted means 19 are each placed in positions that correspond to positions that bisect the spaces between the metal pieces that constitute the yoke 20, so that the cogging torque exerted the rotation axis 12 is reduced.
Abstract:
An electric generator 10 of the present invention comprises a permanent magnet 14, a coil 30, a yoke 20, and attracted means 19 composed of a plurality of attracted pieces 18 which are arranged radially around the rotation axis 12 and are magnetized by the permanent magnet 14. The permanent magnet 14, the coil 30, the yoke 20, and the attracted means 19 are mounted on the rotation axis 12 and the attracted pieces 18 that constitute the attracted means 19 are each placed in positions that correspond to positions that bisect the spaces between the metal pieces that constitute the yoke 20, so that the cogging torque exerted on the rotation axis 12 is reduced.
Abstract:
A rotor-stator structure for electrodynamic machinery is disclosed to, among other things, minimize magnetic flux path lengths and to eliminate back-iron for increasing torque and/or efficiency per unit size (or unit weight) and for reducing manufacturing costs. In one embodiment, an exemplary rotor-stator structure can comprise a shaft defining an axis of rotation, and a rotor on which at least two magnets are mounted on the shaft. The two magnets can be cylindrical or conical magnets having magnetic surfaces that confront air gaps. In some embodiments, substantially straight field pole members can be arranged coaxially and have flux interaction surfaces formed at both ends of those field poles. Those surfaces are located adjacent to the confronting magnetic surfaces to define functioning air gaps, which are generally curved in shape.