Abstract:
A base station for controlling transmission power during the establishment of a communication channel utilizes the reception of a short code during initial power ramp-up. The short code is a sequence for detection by the base station which has a much shorter period than a conventional access code. The ramp-up starts from a power level that is lower than the required power level for detection by the base station. The power of the short code is quickly increased until the signal is detected by the base station. Once the base station detects the short code, it transmits an indication that the short code has been detected.
Abstract:
Provided is an apparatus and method for canceling an interference signal in a packet data receiver in which data is transmitted and received over a packet data channel and a packet data control channel. The packet data channel is time-synchronized with the packet data control channel. A buffer temporarily stores a signal on the packet data channel, combined after being received through multiple paths, until the packet data control channel is decoded. An interference cancellation controller analyzes packet data control channel information obtained by decoding the packet data control channel, and outputs an interference cancellation command signal only when it is determined that effective packet data to be received exists in a current time slot. An interference cancellation section receives the packet data channel signal output from the buffer, and cancels an interference signal from the packet data channel signal only when the interference cancellation command signal is received.
Abstract:
A correlator (30) for performing a correlation with a received spread spectrum signal, comprising at least an input (30.1) for inputting samples of a received signal; at least one reference code input (30.2) for inputting at least one reference code, a correlator block comprising a data shift register (36) for receiving the signal samples; a number of register groups (31) comprising a code shift register (33) for receiving at least a part of at least one reference code; and a code register (34) for receiving data from the code shift register (33); configuration pathways (201, 202, 203) for arranging the connections between the code shift register and code register (33, 34) of the register groups (31) in a reconfigurable manner.
Abstract:
A code-tracking system includes a loop filter, which receives an early/late error signal and outputs a loop filter error signal. An error scaling device receives the loop filter error representing an update and provides a code tracking adjustment signal. A controller monitors a frequency of updates and/or a number of same direction updates and provides a filter coefficient in accordance with the frequency of updates and/or the number of same direction updates.
Abstract:
A User Equipment (UE) has a circuit that performs the acquisition for the low chip rate option of the Universal Mobile Telecommunication System (UMTS) Time Division Duplex (TDD) standard as formulated by the Third Generation Partnership Project (3GPP). The present invention implements the detection of the basic SYNC code; the determination of the midamble used and the detection of the superframe timing based on SYNC code modulation sequence. This enables reading of a full Broadcast Channel (BCH) message.
Abstract:
A method of managing processing resources in a mobile radio system, in which a first entity manages radio resources and corresponding processing resources, the latter being provided in a second entity separate from the first entity. The second entity signals to the first entity its global processing capacity, or capacity credit, and the consumption law, or quantity of the global processing capacity, or cost, for different spreading factor values. The first entity updates the capacity credit on the basis of the consumption law. In the case of multicode transmission using N spreading codes, the updating is effected on the basis of the cost for at least one of the N spreading codes.
Abstract:
A wireless spread spectrum communication platform for processing a communication signal is disclosed herein. The wireless communication platform includes a first computing element, a second computing element, and a reconfigurable interconnect. The first computing element is coupled to the second computing element via the reconfigurable interconnect. A design configuration of the first computing element is heterogeneous with respect to a design configuration of the second computing element. The reconfigurable interconnect has an uncommitted architecture, thereby allowing it to be configured by an outside source to couple portions of the first reconfigurable interconnect with portions of the second reconfigurable interconnect in a variety of combinations. The first computing element, the second computing element, and the reconfigurable interconnect operable to perform discrete functions suitable for processing of the communication signal.
Abstract:
An improvement for a method and system for tracking a spreading code, used in a code division multiple access (CDMA) system. An input signal has spread-spectrum modulation. The spreading code embedded in the spread-spectrum modulation has a plurality of chips. The input signal is sampled, and half-chip offset samples are formed from the sampled input signal. An even set of the half-chip offset samples are grouped into an early set of samples, and an odd set of the half-chip offset samples are grouped into a late set of samples. Each early set of samples is multiplied by the spreading code c(n+1), c(n+2), . . . , c(n+L), to generate a first plurality of products. L is approximately equal to the number of chips of delay between the earliest and latest multipath signals. A first plurality of sums and magnitudes are computed from the first plurality of products. The first plurality of magnitudes are summed to generate an early signal-energy value. Each late set of samples is multiplied by the spreading-code c(n−1), c(n−2), . . . , c(n−L), thereby generating a second plurality of products. A second plurality of sums and magnitudes are computed from the second plurality of products. The second plurality of magnitudes are summed to generate a late signal-energy value. A difference is calculated between the early signal-energy value and the late signal-energy value, thereby producing an error signal.
Abstract:
A receiving unit, receiving method, and semiconductor device that reduce the size of circuits in a receiving unit. A receiving section receives signals sent from a base station and transmitted through a plurality of paths. A path tracking section detects timing of each of the plurality of paths through which the signals received by the receiving section were transmitted. A demodulating section demodulates the received signals by performing a despreading process according to the timing of the plurality of paths detected by the path tracking section. A correlation value calculating section calculates a correlation value between the received signals and a spreading code. A destination selecting section provides output from the correlation value calculating section to the path tracking section in the case of performing a path tracking process by the path tracking section and provides output from the correlation value calculating section to the demodulating section in the case of demodulating the received signals by the demodulating section.
Abstract:
A system for rapidly acquiring a spreading code, used in a code division multiple access (CDMA) system, comprises a generator for generating a first long code and a second long code, with each long code having a length of N chips. The first long code is different from the second long code. A transmitter transmits the first long code and the second long code at a first phase angle and at a second phase angle, respectively, on a carrier signal over a communications channel using radio waves. The first long code and the second long code may be transmitted at an in-phase (I) angle and at a quadrature-phase (Q) angle, respectively, on the carrier signal. From the communications channel, an I acquisition circuit and a Q acquisition circuit may acquire, in parallel, the first long code and the second long code from the I angle and the Q angle, respectively, of the carrier signal by searching, in parallel, N/2 chips of the first long code and the second long code.