Abstract:
A network datacast system includes a plurality of transmission facilities. Each transmission facility receives primary programs from one or more media studios. Each transmission facility also receives ancillary data programs from a network datacast center. Each transmission facility broadcasts a wireless signal that includes a primary channel and at least one ancillary data channel. The transmission facilities contemporaneously transmit the ancillary programs on the ancillary data channels. A network datacast receiver contemporaneously receives the wireless signals and extracts the datacast programs from each datacast signal. The extracted datacast programs are stored in the receiver for subsequent output to the user.
Abstract:
This invention provides a method for reducing FM interference in an in-band on-channel digital audio broadcasting system. The method includes the steps of receiving a composite signal including a signal of interest and an interfering signal and normalizing the composite signal to produce a normalized composite signal. The composite signal is then multiplied by the complex conjugate of the normalized composite signal to produce a real signal. Then the real signal is filtered and the resulting filtered signal is multiplied by the normalized composite signal to produce an output signal. The adverse effects of the interfering signal in the output signal are reduced with respect to the magnitude of the signal of interest reducing FM interference in an in-band on-channel digital audio broadcasting system, thereby making it easier to detect the signal of interest. The output signal and the composite can be blended in response to the power of the real and filtered signals Radio receivers that utilize the above method are also included.
Abstract:
This invention provides a method for reducing FM interference in an in-band on-channel digital audio broadcasting system. The method includes the steps of receiving a composite signal including a signal of interest and an interfering signal and normalizing the composite signal to produce a normalized composite signal. The composite signal is then multiplied by the complex conjugate of the normalized composite signal to produce a real signal. Then the real signal is filtered and the resulting filtered signal is multiplied by the normalized composite signal to produce an output signal. The adverse effects of the interfering signal in the output signal are reduced with respect to the magnitude of the signal of interest reducing FM interference in an in-band on-channel digital audio broadcasting system, thereby making it easier to detect the signal of interest. The output signal and the composite can be blended in response to the power of the real and filtered signals Radio receivers that utilize the above method are also included.
Abstract:
A system (100) is provided wherein a primary radio signal and a redundant radio signal are transmitted from a transmitter subsystem (120) and received by a receiver subsystem (140). The output (112) of an audio source (110) is coupled to a modulator (160) for modulating a radio frequency signal (162) for coupling to a transmit antenna (172). A second output (114) of audio source (110) is coupled to a delay circuit (116), for adding a predetermined time delay thereto. The delayed audio source signal is coupled to a modulator (164) for modulating a second radio frequency signal (166) that is also coupled to the transmit antenna (172). The receiver subsystem (140) receives both the primary radio signal and the delayed redundant radio signal and couples each to a respective demodulator (180, 182). At least one demodulator (180) includes a circuit (181) for determining the degradation in the primary radio signal and provides a quality measurement output signal (186) to a blend control circuit (190). The recovered primary audio signal from demodulator (180) is coupled to a second delay circuit (184), the time delay of second delay circuit (184) being substantially equal to the time delay of delay circuit (116). The audio output from delay circuit (184) and the redundant audio output from demodulator (182) are coupled to a blending subsystem (135), wherein each is combined with a weighting factor and then combined together to form a composite audio signal for coupling to the audio output circuit (150).
Abstract:
A system and method for transmitting digital information through a medium such as atmospheric free-space includes a transmitter which generates a signal based on a basis set of mutually orthogonal, spectrally-shaped, sequences of substantially equal length and having predetermined autocorrelation values. The sequences may resemble noise in at least some of their characteristics. The orthogonality or cross-correlation characteristics, the autocorrelation characteristics and the resemblance to noise are due to features derived from sequences of pseudo-random numbers which themselves resemble noise in at least some of their characteristics. The waveform set based on the sequences is modulated digitally. The modulated set may be summed together along with a wideband reference signal of reduced amplitude and optionally an FM analog signal to form a composite signal which is broadcast typically through free space to at least one receiver. The receiver separates the analog FM signal from the digital signal and thereafter demodulates the digital data-carrying waveforms and outputs a stream of digital data. It has been determined to be resistant to multipath degradation.
Abstract:
A system and method for transmitting digital information through a medium such as atmospheric free-space includes a transmitter which generates a signal based on a basis set of mutually orthogonal, spectrally-shaped, sequences of substantially equal length and having predetermined autocorrelation values. The sequences may resemble noise in at least some of their characteristics. The orthogonality or cross-correlation characteristics, the autocorrelation characteristics and the resemblance to noise are due to features derived from sequences of pseudo-random numbers which themselves resemble noise in at least some of their characteristics. The waveform set based on the sequences is modulated digitally. The modulated set may be summed together along with a wideband reference signal of reduced amplitude and optionally an FM analog signal to form a composite signal which is broadcast typically through free space to at least one receiver. The receiver separates the analog FM signal from the digital signal and thereafter demodulates the digital data-carrying waveforms and outputs a stream of digital data. It has been determined to be resistant to multipath degradation.
Abstract:
A system for combining AM and FM transmissions. In-band, On-channel, FM Digital Audio Broadcast (IBOC FM-DAB) allows simultaneous transmission of DAB and FM over existing FM allocations without interfering with conventional analog FM signals. The utility of existing FM spectrum allocations is therefore enhanced.
Abstract:
A radio broadcasting system for a composite signal consisting of a frequency modulated (fm) analog signal and a multicarrier modulated digital signal is provided which is resistive to multipath degradation. The fm signal and the digital multicarrier modulated signal are fully coherent. The digital signal uses a plurality of carriers having a maximum amplitude at least 20 dB below the unmodulated fm signal. The multicarrier modulated signal is phase locked to a recovered analog fm pilot tone in the composite baseband spectrum of the fm signal which is at least 20 dB above the multicarrier modulated signal, which enables rapid and reliable acquisition of signal for coherent detection. In a specific embodiment the multicarrier modulated signal is a synthesized vector-modulated signal which is a quadrature phase shift keyed (QPSK) modulated set of synthesized carriers each occupying 9.5 kHz of spectrum replicated twenty-one times within a 199.5 kHz bandwidth with no more than two bits per vector. An efficient channel coding consisting of high efficiency block coding, such as BCH 255, 239 code, is employed in connection with time interleaving of bits to mitigate the effects of frequency selective multipath and broadband multipath. The broadcast system is designed to be used in support of compressed digital audio programming material. In demodulation, a demodulator is phased-locked to the recovered high-amplitude analog pilot tone to coherently demodulate the digital signal, to deinterleave, to decode the block encoded signal and to format the recovered data stream for source decoding.
Abstract:
A method of processing a digital radio broadcast signal includes: (a) determining a plurality of current correlation sample values representative of a time delay between samples in an analog audio sample stream and samples in a digital audio sample stream; (b) determining a current inversion status; (c) updating a delay history and an inversion status history; (d) checking the current correlation sample values for consistency with a first confidence threshold; (e) if consistency is found in step (d), determining if each of a first plurality of values in the delay history is consistent within a predetermined range of the current correlation sample values; (f) if consistency is found in step (e), determining if a value in the inversion status history is consistent with the current inversion status; and (g) if the consistency is found in step (f), allowing blending of an output to the digital audio sample stream.
Abstract:
The present invention provides a system for frequency modulation of high definition composite video broadcast signals in a wireless transmission environment and a method thereof, comprising: a transmitting unit and a receiving unit. An image sensor of the transmitting unit converts an image to a digital signal. A signal processor converts the digital signal to a composite video broadcast signal. A frequency modulator modulates the composite video broadcast signal to a first modulated signal. The receiving unit receives the first modulated signal. A low noise amplifier converts the first modulated signal to a second modulated signal. A frequency demodulator restores the second modulated signal to the composite video broadcast signal. After an image decoder decodes the composite video broadcast signal, the image decoder outputs a digital signal in a specific format.