Abstract:
The improvement in the process for recovering zinc from ferrites which includes treating electrolytic zinc plants residues with a sulfuric acid solution to dissolve the zinc and metals, a solution resulting which contains sulphates of zinc and the other dissolved metals. The undissolved residue is separated in a certain manner from the solution. The solids-free solution is neutralized in a second step with calcine or another neutralizing agent containing zinc until a certain acidity is reached so that the iron remaining in solution separates therefrom in the form of its complex basic sulfate. The solids are settled out and then sent to a neutralization step, which is part of the residue separation scheme, where they are used as seeds of crystals of complex basic sulfate of iron which helps to remove iron in the first neutralization step. This final solution is added to the normal circuit or process flow path of electrolytic zinc plants. Any Fe.sup.+.sup.+ existing or forming during the process is oxidized by MnO.sub.2.
Abstract:
Method for the continuous separation of the solid phase in the purification of zinc sulphate solutions. The solutions are filtered on chamber disc filters under an elevated pressure up to 4 atm. The precipitate is removed mechanically from the filtering elements by the action of a strong jet of zinc sulphate solution at a temperature of 40*-60*C. The recovery of the filtrability of the filter cloth of the chamber disc filter is achieved by washing it with hot water. Chamber disc filter for carrying out the above method. The apparatus has a collector shaft with mounted collector tubes, filtering elements, clothed with a synthetic filtering cloth, a nozzle washing device, means for rotating the collector shaft and filtering elements, and a driven screw for collecting the separated solid phase, the pipe connecting the filtering elements with the collector shaft having section of above 13 mm.
Abstract:
The present disclosure generally relates to processes for the reduction of transition metals using alkali metals to produce reduced transition metals.
Abstract:
A process and an apparatus are disclosed for improved recovery of metal from hot and cold dross, wherein a dross-treating furnace is provided with a filling material with capacity to store heat. This filling material is preheated to a desired temperature by injection of an oxidizing gas to burn non-recoverable metal remaining in the filling material after tapping of the recoverable metal contained in the dross and discharging of the treatment residue. When dross is treated in such furnace, the heat emanating by conduction from the filling material is sufficient to melt and separate the recoverable metal contained in the dross, without addition of an external heat source, such as fuel or gas burners, plasma torches or electric arcs and without use of any salt fluxes. Furthermore, the recovered metal being in the molten state can be fed to the molten metal holding furnace without cooling the melt.
Abstract:
Provided is a method for inhibiting extractant degradation comprising preparing step, extracting step and scrubbing step, the method including: (a) the preparing step of a DSX solvent by adjusting the extractant concentration of the DSX solvent to a specific range; (b) the extracting step of metal included in the feed solution by adjusting the ratio of the organic (solvent) and an aqueous (solution) as a feed solution; (c) the scrubbing step of adjusting the zinc concentration of the solution using zinc sulfate; and (d) stripping step.
Abstract:
Provided is a method for inhibiting extractant degradation in the DSX process through the metal extraction control, the method comprising steps of: (a) adding limestone to a copper solvent extraction-raffinate to precipitate iron (Fe) and aluminum (Al) as a slurry, recovering a clarifying liquid; and (b) adding sulfuric acid to the recovered clarifying liquid to adjust the pH thereof.
Abstract:
Provided is a method for inhibiting extractant degradation in the DSX process through the metal extraction control, the method comprising steps of: (a) adding limestone to a copper solvent extraction-raffinate to precipitate iron (Fe) and aluminum (Al) as a slurry, recovering a clarifying liquid; and (b) adding sulfuric acid to the recovered clarifying liquid to adjust the pH thereof.
Abstract:
A process and an apparatus are disclosed for improved recovery of metal from hot and cold dross, wherein a dross-treating furnace is provided with a filling material with good capacity to store heat. This filling material is preheated to a desired temperature by injection of an oxidizing gas to burn non-recoverable metal remaining in the filling material after tapping of the recoverable metal contained in the dross and discharging of the treatment residue. When dross is treated in such furnace, the heat emanating by conduction from the filling material is sufficient to melt and separate the recoverable metal contained in the dross, without addition of an external heat source, such as fuel or gas burners, plasma torches or electric arcs and without use of any salt fluxes. Furthermore, the recovered metal being in the molten state can be fed to the molten metal holding furnace without cooling the melt; in addition, the non-use of fluxing salt for the treatment means that the non-contaminated residue can be used as a cover for the electrolytic cells in the case of aluminum. In the case of zinc dross, the residue is a valuable zinc oxide by-product very low in contaminants.