ENERGY EFFICIENT SALT-FREE RECOVERY OF METAL FROM DROSS
    2.
    发明申请
    ENERGY EFFICIENT SALT-FREE RECOVERY OF METAL FROM DROSS 审中-公开
    从能源效率高效地回收金属

    公开(公告)号:US20170009319A1

    公开(公告)日:2017-01-12

    申请号:US15094857

    申请日:2016-04-08

    Abstract: A process and an apparatus are disclosed for improved recovery of metal from hot and cold dross, wherein a dross-treating furnace is provided with a filling material with good capacity to store heat. This filling material is preheated to a desired temperature by injection of an oxidizing gas to burn non-recoverable metal remaining in the filling material after tapping of the recoverable metal contained in the dross and discharging of the treatment residue. When dross is treated in such furnace, the heat emanating by conduction from the filling material is sufficient to melt and separate the recoverable metal contained in the dross, without addition of an external heat source, such as fuel or gas burners, plasma torches or electric arcs and without use of any salt fluxes. Furthermore, the recovered metal being in the molten state can be fed to the molten metal holding furnace without cooling the melt; in addition, the non-use of fluxing salt for the treatment means that the non-contaminated residue can be used as a cover for the electrolytic cells in the case of aluminum. In the case of zinc dross, the residue is a valuable zinc oxide by-product very low in contaminants.

    Abstract translation: 公开了一种用于从热和冷浮渣中改善金属回收的方法和装置,其中,浮渣处理炉具有能够储存热量的填充材料。 通过注入氧化气体将该填充材料预热至期望的温度,以在开采渣中含有的可回收金属并排出处理残渣后,将残留在填充材料中的不可回收金属燃烧。 当在这种炉子中处理浮渣时,通过从填充材料的传导发出的热量足以熔化和分离渣滓中包含的可回收金属,而不需要添加外部热源,例如燃料或气体燃烧器,等离子炬或电 弧并且不使用任何盐流。 此外,处于熔融状态的回收金属可以不熔化熔体而被供给到熔融金属保持炉中; 此外,不使用助熔盐用于处理意味着在铝的情况下,未污染的残余物可以用作电解池的覆盖物。 在锌渣的情况下,残留物是有价值的氧化锌副产物,污染物非常低。

    High power DC non transferred steam plasma torch system

    公开(公告)号:US11116069B2

    公开(公告)日:2021-09-07

    申请号:US16225963

    申请日:2018-12-19

    Abstract: A high power DC steam plasma torch system (S) includes a steam plasma torch assembly (1) wherein superheated steam (46) is used as the main plasma forming gas, thereby resulting in a very reactive steam plasma plume. The superheated steam (46) is injected internally directly into the plasma plume via a ceramic lined steam feed tube (25) for reducing condensation of steam before reaching the plasma plume. The superheated steam (46) flows through a gas vortex (16) which has tangentially drilled holes thereby resulting in a high speed gas swirl that minimizes electrode erosion. In the present steam plasma torch system (S), the plasma torch assembly (1) is ignited using an ignition contactor which is housed external to the plasma torch assembly (1). The superheated steam (46) is injected into the plasma plume using a water cooled steam vortex generator assembly (15).

    Plasma fired steam generator system

    公开(公告)号:US10253971B2

    公开(公告)日:2019-04-09

    申请号:US15021899

    申请日:2014-09-12

    Abstract: A system for generating high pressure steam from dirty water uses a combination of sub-merged plasma arcs and electrical resistive heating. Dirty water from steam assisted gravity drainage, or other dirty water producing process, which needs to be converted into high pressure steam, is fed directly without any pre-treatment, into a plasma fired steam generator, powered by submerged electrodes. The combination of electric arc plasma and resistive heating is created between the submerged electrodes. The heat so generated will boil the water portion of the dirty water feed to generate steam that is collected in a steam space and then removed there from. The solids and other residues (residual sludge) present in the feed water settle down at the bottom of the steam generator and are removed via a blow-down stream. The plasma arcs are used to intermittently remove any scaling or solid deposits that can accumulate on the electrodes.

    ENERGY EFFICIENT SALT-FREE RECOVERY OF METAL FROM DROSS

    公开(公告)号:US20200332392A1

    公开(公告)日:2020-10-22

    申请号:US16712810

    申请日:2019-12-12

    Abstract: A process and an apparatus are disclosed for improved recovery of metal from hot and cold dross, wherein a dross-treating furnace is provided with a filling material with good capacity to store heat. This filling material is preheated to a desired temperature by injection of an oxidizing gas to burn non-recoverable metal remaining in the filling material after tapping of the recoverable metal contained in the dross and discharging of the treatment residue. When dross is treated in such furnace, the heat emanating by conduction from the filling material is sufficient to melt and separate the recoverable metal contained in the dross, without addition of an external heat source, such as fuel or gas burners, plasma torches or electric arcs and without use of any salt fluxes. Furthermore, the recovered metal being in the molten state can be fed to the molten metal holding furnace without cooling the melt; in addition, the non-use of fluxing salt for the treatment means that the non-contaminated residue can be used as a cover for the electrolytic cells in the case of aluminum. In the case of zinc dross, the residue is a valuable zinc oxide by-product very low in contaminants.

    High power DC non transferred steam plasma torch system

    公开(公告)号:US10178750B2

    公开(公告)日:2019-01-08

    申请号:US14768090

    申请日:2014-02-17

    Abstract: A high power DC steam plasma torch system (S) includes a steam plasma torch assembly (1) wherein superheated steam (46) is used as the main plasma forming gas, thereby resulting in a very reactive steam plasma plume. The superheated steam (46) is injected internally directly into the plasma plume via a ceramic lined steam feed tube (25) for reducing condensation of steam before reaching the plasma plume. The superheated steam (46) flows through a gas vortex (16) which has tangentially drilled holes thereby resulting in a high speed gas swirl that minimizes electrode erosion. In the present steam plasma torch system (S), the plasma torch assembly (1) is ignited using an ignition contactor which is housed external to the plasma torch assembly (1). The superheated steam (46) is injected into the plasma plume using a water cooled steam vortex generator assembly (15).

Patent Agency Ranking