Abstract:
The present invention is directed toward cathodes and cathode materials comprising carbon nanotubes (CNTs) and particles. The present invention is also directed toward field emission devices comprising a cathode of the present invention, as well as methods for making these cathodes. In some embodiments, the cathode of the present invention is used in a field emission display. The invention also comprises a method of depositing a layer of CNTs and particles onto a substrate to form a cathode of the present invention, as well as a method of controlling the density of CNTs used in this mixed layer in an effort to optimize the field emission properties of the resulting layer for field emission display applications.
Abstract:
A cathode ray tube having a cathode comprising a sleeve with a heater installed therein and a base metal with a side portion covering an outer circumference of the sleeve and an upper surface portion covering an upper side of the sleeve, satisfies the following formula: tSnulltB1null2tS, wherein tB1 is a thickness of the side portion of the base metal and tS is a thickness of the sleeve. Therefore, the warm-up time taken for formation of an image after power is applied to the cathode ray tube can be shortened.
Abstract:
Apparatus and method are provided for using a multi-element field emission cathode in a color cathode ray tube. The field emission cathode may have from four to ten field emission arrays linearly arranged. The arrays are preferably formed from carbon-based material. An electron gun assembly focuses electron beams from each array on to a phosphor stripe or dot on the screen of the cathode ray tube. Deflection apparatus moves the beam from each field emission array according to clock signals. Clock signals also turn on or turn off voltage to contacts controlling electron current from the array. Values of voltage applied, determined by a video signal, determine the intensity of electron current from each array, which controls the intensity of the light emitted by each color stripe or dot of phosphor on the phosphor screen.
Abstract:
The oxide cathode (2) comprises a support (1) and an oxide layer (3) on the latter. It furthermore includes particles (8) of a conducting material having a first end (8a) incorporated in the support (1) and a second end (8b) lodged in the oxide layer (3), so as to constitute conducting bridges passing through an interface layer (6) forming between the support (1) and the oxide layer (3). The invention also relates to a process for manufacturing such a cathode. The conducting particles (8) make it possible to improve the electrical conductivity of the cathode, both within the oxide layer (3) and within the interface layer (6).
Abstract:
To obtain a cathode electrode (a cathode structure) where the electron beam spot diameter or size is reduced, the cathode driving voltage is lowered and the cathode current is stabilized for a long period, a recess or a region which does not radiate electron beams is formed near the central portion or near the outer circumference portion of an electrode radiation substance 9 of a cathode electrode 1, and hollow electron beams are obtained related to a cathode electrode, its manufacturing method, an electron gun and a cathode-ray tube.
Abstract:
In a field emission-type electron source (10), a strong field drift layer (6) and a surface electrode (7) consisting of a gold thin film are provided on an n-type silicon substrate (1). An ohmic electrode (2) is provided on the back surface of the n-type silicon substrate (1). A direct current voltage is applied so that the surface electrode (7) becomes positive in potential relevant to the ohmic electrode (2). In this manner, electrons injected from the ohmic electrode (2) into the strong field drift layer (6) via the n-type silicon substrate (6) drift in the strong field drift layer (6), and is emitted to the outside via the surface electrode (7). The strong field drift layer (6) has: a number of semiconductor nanocrystals (63) of nano-meter order formed partly of a semiconductor layer configuring the strong field drift layer (6); and a number of insulating films (64) each of which is formed on the surface of each of the semiconductor nanocrystals (63) and each having film thickness to an extent such that an electron tunneling phenomenon occurs.
Abstract:
An arc discharge lamp has an evacuated, electromagnetic-energy-transmissive envelope having therein an arc generating and sustaining medium. At least one thermionic, electron-emitting cathode is positioned within the envelope, and the cathode has an electron emissive coating thereon containing silicon carbide.
Abstract:
A catalyst for promoting growth of carbon fiber, which is capable of growing satisfactorily at a low temperature without needing complex process and applicable to such as electron emitting device. The catalyst used for growth of carbon fiber contains Pd and at least one element selected in the group consisting of Fe, Co, Ni, Y, Rh, Pt, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er and Lu, in which 20null80 atm % (atomic percentage) of the selected at least one element is contained to Pd.
Abstract:
In a method of manufacturing matrix electron emitter arrays, each array comprising a plurality of scanning lines formed on a glass substrate and arranged in parallel with each other, a plurality of signal lines formed in a direction to cross the scanning lines and arranged in parallel with each other, and field-emission type electron emitters formed in the pixel areas which are arranged at the intersections of the scanning lines and the signal lines, a pulse voltage with a specific polarity and another pulse voltage with the reverse polarity are applied to any two of the scanning lines and current is caused to flow through electron emitters connected in series-via a signal line, thereby subjecting the conductive thin film constituting an electron emitter to a conductive activation process for forming an electron emitting section.
Abstract:
A thermionic emitter for use in an X-ray tube with a rotating cathode, particularly in rotating bulb X-ray tubes, is composed of an alloy of a refractory metal, such as tungsten, with an additive of at least 20 ppm potassium. This emitter material avoids deterioration of the emitter due to grain creep.