Abstract:
A method is provided for manufacturing a display with a partition wall to form a luminescent cell on a base 30 of the display. The method includes a step of forming an inorganic micro-powder layer in which an inorganic micro-powder layer is formed on the base; and a step for forming thee partition wall in which the partition wall is formed by irradiating the inorganic micro-powder layer on the base with laser light so as to melt the inorganic micro-powder layer and form the partition wall.
Abstract:
A plasma display panel is provided in which discharge connection in the column direction is prevented without increasing the number of man-hours in a formation process of a partition and without deteriorating ventilation for an exhaust process. A pattern in a plan view of a partition is made a mesh pattern in which vertical patterns are included at inter-row positions in each column. Each of first vertical walls is positioned at a boundary between columns, each of second vertical walls is arranged at a position away from a boundary between columns for each boundary between rows and each of horizontal walls is positioned at a boundary between rows. In the partition, a height of portions where the first vertical wall crosses the horizontal wall and a height of portions where the second vertical wall crosses the horizontal wall are smaller than a height of the other portions of the partition.
Abstract:
A plasma display includes a display panel and a driving circuit for driving the display panel. A space for at least one color, of spaces between barrier ribs for defining discharge spaces for red, green and blue colors of the display panel is different from the spaces for other colors.
Abstract:
When two facing electrodes forming a first set are spaced at a large interval, a first electrode in the first set is prone to erroneously discharge with a second electrode forming a second set separated from the first set. A plasma display panel comprises: a first glass substrate and a second glass substrate facing each other; a plurality of sets of discharge sustain electrodes, each set including one common electrode and two independent electrodes on both sides of the common electrode provided on a surface of the first glass substrate that faces the second glass substrate, the common electrode and the two independent electrodes extending in parallel with each other; a dielectric layer coating the plurality of sets of discharge sustain electrodes; a plurality of address electrodes provided in parallel in a direction perpendicular to the common electrodes on a surface of the second glass substrate that faces the first glass substrate with a space interposed between the dielectric layer and the address electrodes; partitions provided between adjacent ones of the address electrodes between the first and second glass substrates; a phosphor coating the partitions; and first insulating parts provided in positions facing the common electrodes with the dielectric layer interposed therebetween.
Abstract:
In an AC plasma display panel having a glaze layer covering address electrodes, a proper amount of conductive filler is introduced into the glaze layer, to lower the volume resistivity of the glaze layer. Thus, generation of spark discharge can be suppressed in driving the display panel.
Abstract:
A surface discharge alternating current plasma display panel has a pair of transparent electrodes supplied with current from metal bus electrodes through connecting portions spaced from each other by slits, a dielectric layer covering the pair of transparent electrodes and the metal bus electrodes and a porous insulating layer covering a part of the dielectric layer over the metal bus electrodes; when surface discharge occurs between the transparent electrodes of the pair, the surface discharge is spread toward the bus electrodes; however, the surface discharge can not exceed the slits; for this reason, the surface discharge is concentrated over the transparent electrodes.
Abstract:
Although it is inevitable that the barrier rib fracture remains on the barrier rib from a pressure applied from opposing glass substrates surface, the present invention aims to assemble the panel display after removing the broken fragments of the barrier rib from the discharge chamber. According to the manufacturing method of the panel display for the present invention, the method includes the step of temporary aligning the two glass substrates face-to-face, the step of decompressing the barrier rib pattern area formed by the alignment of the two glass substrates by isolating the barrier rib pattern area from the normal atmospheric pressure, the step of cleaning at least one of the glass substrates on facing side by detaching one of the glass substrates after the pressure has been returned to the normal atmospheric pressure, and the step of forming the discharge chamber by pasting the two glass substrates together in the similar manner as the temporary alignment.
Abstract:
A plasma display panel includes front and rear substrates; anodes in a stripe pattern on a facing surface of the front substrate; a lower electrode coating the entire facing surface of the rear substrate; a dielectric layer coating the lower electrode; an upper electrode coating the dielectric layer in a pattern; and a lattice of partition walls between the upper electrode and the front substrate. The portions of the dielectric layer between the partition walls and not coated with the upper electrode form respective pixels. Sputtering is minimized and there is less damage to the electrodes by the gas, thus extending the length of use of the product. The ferroelectric material of the lower electrode has excellent resistance with respect to the discharge gas and the discharge can be initiated with a low initial discharge starting voltage since the ferroelectric cathode provides enough electrons for the discharge.
Abstract:
An electromagnetic field shielding layer made of an electroconductive material and having windows corresponding to display cells is formed on a substrate on the side of display. Color filters are provided on the windows of the electromagnetic field shielding layer to allow the electromagnetic field shielding layer to exist on boundaries between adjacent color filters. The electromagnetic field shielding layer and color filters may be covered with an insulating body layer.
Abstract:
An electrode substrate of an AC type plasma display panel has a major surface with electrically connected display electrodes formed thereon and defining a display portion of the substrate. An insulating layer, of a ZnO-containing glass material containing substantially no lead, is formed on and covers the display portion of the major surface. The display electrodes may be a film of a transparent electrically-conducted material or a multi-layer film combination of a transparent electrically-conducted film of a first width and a metal film of a second, narrower width.