Abstract:
Systems and methods are disclosed that performs active feature probing using data augmentation. Active feature probing is a means of actively gathering information when the existing information is inadequate for decision making. The data augmentation technique generates factitious data which complete the existing information. Using the factitious data, the system is able to estimate the reliability of classification, and determine the most informative feature to probe, then gathers the additional information. The features are sequentially probed until the system has adequate information to make the decision.
Abstract:
A method includes inserting test points into a circuit for reducing the number of specified bits required for transition fault testing of the circuit by reducing the dependency of a second time-frame pattern of the circuit on a first time-frame pattern of the circuit. Preferably, inserting the test points includes controlling directly scan flip-flops of the circuit in the second time-frame requiring a number of scan flip-flops to be specified in the first time-frame for reducing the number of specified bits to detect transition faults.
Abstract:
A system and method for analyzing a computer program includes performing a static analysis on a program to determine property correctness. Test cases are generated and conducted to provide test output data. Hypotheses about aspects of execution of the program are produced to classify paths for test cases to determine whether the test cases have been encountered or otherwise. In accordance with the hypothesis, new test cases are generated to cause the program to exercise behavior which is outside of the encountered test cases.
Abstract:
An encoder includes an outer repetition encoder, an interleaver for permuting encoding from said outer repetition encoder; and an inner encoder for encoding information from the interleaver to provide a repeat zigzag-Hadamard code. In an exemplary embodiment, a common bit of a zigzag-Hadamard segment of encoding from said inner encoder is a repetition of a last parity bit of a previous zigzag-Hadamard segment of encoding from said inner encoder and said common bit is punctured.
Abstract:
An efficient approach for SAT-based quantifier elimination and pre-image computation using unrolled designs that significantly improves the performance of pre-image and fix-point computation in SAT-based unbounded symbolic model checking.
Abstract:
Disclosed is an apparatus and method for testing an IC having a plurality of scan chains. A test input is transmitted over a tester channel to at least one scan chain during a time interval. Specifically, a memory element stores a first test input transmitted during a first time interval and a combinational circuit connected to the memory element and scan chain transmits to the scan chain one of a) the first test input and b) a second test input transmitted over the tester channel during a second time interval occurring after the first time interval.
Abstract:
Disclosed is a method for training a transductive support vector machine. The support vector machine is trained based on labeled training data and unlabeled test data. A non-convex objective function which optimizes a hyperplane classifier for classifying the unlabeled test data is decomposed into a convex function and a concave function. A local approximation of the concave function at a hyperplane is calculated, and the approximation of the concave function is combined with the convex function such that the result is a convex problem. The convex problem is then solved to determine an updated hyperplane. This method is performed iteratively until the solution converges.
Abstract:
A method includes constraining total power received from cellular users accessing a base station through any one of a TDMA access, CDMA access, and a derivation of a TDMA/CDMA access, and scheduling users for access to the base station within the constrained total power in response to an optimization that for each time slot determines a group of time critical cellular users and their transmission power factoring in instantaneous location-dependent channel states and long term quality of service performance. In the preferred embodiment, the optimization includes an iterative solution of an NP-hard Knapsak problem with initialization of maximum transmit power per cellular user inversely proportional to at least one of an activity factor of a cellular user's channel, the cellular user's antenna gain, the instantaneous channel gain of a dedicated uplink channel for the cellular user, and other-cellular user to same-cellular user interference ratio, and directly proportional to total resource power consumption.
Abstract:
A lattice space time coding arrangement for transmission systems is disclosed which enables construction of lattice space time codes with improved error rate performance for arbitrary receiver structures.