Abstract:
A thermal lithographic printing plate overcoat composition comprising (a) a water-soluble polymeric dye having an absorption band between about 300 and about 600 nm; and (b) micro-particles or nano-particles is provided. A negative-working thermal lithographic printing plate comprising (a) a hydrophilic substrate; (b) a near infrared imaging layer disposed on the hydrophilic substrate; and (c) an overcoat layer disposed on the imaging layer, said overcoat layer comprising a water-soluble polymeric dye having an absorption band between about 300 and about 600 nm; and micro-particles or nano-particles is also provided. Finally, a water-soluble polymeric dye having an absorption band between about 300 and about 600 nm is provided.
Abstract:
A method of preparing a lithographic printing plate in which no pre-heat step is used comprising the steps of:—providing a lithographic printing plate precursor comprising a support and a photopolymerizable image-recording layer, the image-recording layer comprising a monomer and a binder;—image-wise exposing the precursor in an exposure unit;—off press developing the exposed precursor with an aqueous solution in a processing unit; characterized in that the ratio of the total amount of monomer to the total amount of binder is at least 1 and the time lapse between exposing an image-area of the precursor and contacting the image-area with the aqueous solution is at least 1 minute.
Abstract:
Negative-working imageable elements such as lithographic printing plate precursors, include a free-radically polymerizable component, an initiator composition that is capable of generating free radicals sufficient to initiate polymerization of the free-radically polymerizable component upon exposure to imaging radiation in the presence of a radiation absorbing compound, a radiation absorbing compound, an aerobic free radical inhibitor, optionally a polymeric binder that is not a free radically polymerizable component, and an anaerobic free radical inhibitor. The molar ratio of the anaerobic free radical inhibitor to the aerobic free radical inhibitor is at least 1:1. This combination of inhibitors provides increased shelf life and good latent image stability particularly when the element includes a polymeric topcoat layer that functions as an oxygen barrier.
Abstract:
A lithographic printing plate precursor in a positive-type with an infrared-sensitivity, having a support and an image recording layer provided on the support, the support having a hydrophilic surface, the recording layer having a particular resin, an amphoteric surfactant and/or an anionic surfactant, and an infrared absorbing agent, wherein the particular resin being at least one of resins selected from the group consisting of a polyurethane resin, a poly (vinyl acetal) resin, and maleimide resin A.
Abstract:
A thermal positive-type planographic original printing plate comprising a support and at least one recording layer provided on the support, either the same layer or different layers of the recording layer comprising: a star polymer in which at least 3 polymer chains bind to a core comprised atomic groups and are radially branching; and an infrared absorbing agent.
Abstract:
A lithographic printing plate precursor includes, in the following order: a support; an image-recording layer which is capable of forming an image by removing an unexposed area of the image-recording layer with at least one of printing ink and dampening water on a printing machine after exposure and contains an infrared absorbing dye, a polymerization initiator, a polymerizable compound and a binder polymer having an alkylene oxide group; and a protective layer containing a hydrophilic polymer which contains at least a repeating unit represented by the formula (1) as defined herein, a repeating unit represented by the formula (2) as defined herein, and a repeating unit represented by the formula (4) as defined herein, and in which a content of the repeating unit represented by the formula (4) is from 0.3 to 5.0% by mole based on total repeating units of the hydrophilic polymer.
Abstract:
The invention is directed to a lithographic printing plate precursor including, in the following order: a support; an image-recording layer containing a radical polymerizable compound and a radical polymerization initiator; and a protective layer containing a star polymer, and the star polymer is preferably a polymer in which from 3 to 10 polymer chains are branched from a central skeleton.
Abstract:
A lithographic printing plate precursor comprising a support, tin image-recording layer which contains (A) an infrared absorbing agent, (B) a radical polymerization initiator and (C) a radical polymerizable compound and in which an unexposed area can be removed by supplying printing ink and dampening water after exposure, and an overcoat layer in this order, wherein the overcoat layer contains at least two kinds of inorganic stratiform compounds having different crystal structures.
Abstract:
The invention provides a planographic printing plate precursor comprising: a hydrophilic support; and an image recording layer that is provided on the support, the image recording layer comprising: an infrared ray absorbing agent (A); a polymerization initiator (B); a polymerizable monomer (C); and a specific polymer compound (D) having an alkyleneoxy group in its molecule and having, in a side chain thereof at least one specific group. The invention further provides a printing method using the planographic printing plate precursor, wherein no specific development process is required for performing printing.
Abstract:
A heat-sensitive negative-working lithographic printing plate precursor includes a support having a hydrophilic surface or which is provided with a hydrophilic layer and a coating provided thereon, the coating including an image-recording layer which includes hydrophobic thermoplastic polymer particles, a binder, and an infrared absorbing dye; wherein the hydrophobic thermoplastic polymer particles have an average particle diameter, measured by Photon Correlation Spectroscopy, of more than 10 nm and less than 40 nm; the amount of the IR-dye, without taking into account an optional counter ion, is more than 0.80 mg per m2 of the total surface of the thermoplastic polymer particles, measured by Hydrodynamic Fractionation; and the amount of hydrophobic thermoplastic polymer particles relative to the total weight of the ingredients of the imaging layer is at least 60%.
Abstract translation:热敏负性平版印刷版原版包括具有亲水性表面的或具有亲水层的涂层及其上设置的涂层,所述涂层包括图像记录层,该图像记录层包括疏水性热塑性聚合物颗粒,粘合剂, 和红外吸收染料; 其中所述疏水热塑性聚合物颗粒具有通过光子相关光谱测量的平均粒径大于10nm且小于40nm; 通过流体力学分级测量,不考虑任选的抗衡离子的IR染料的量大于0.80mg / m 2热塑性聚合物颗粒的总表面; 并且疏水性热塑性聚合物颗粒相对于成像层的成分的总重量的量为至少60%。