Abstract:
Positive-working imageable elements can be imaged and processed using a processing solution that comprises at least 0.03 N of an organic amine or a mixture thereof, whose conjugated acids have a pKa greater than 9 and a boiling point greater than 150° C. The imageable element is a single-layer, infrared radiation-sensitive positive-working imageable element comprising a substrate and an infrared radiation absorbing compound. It also has an imageable layer that comprises a developability-enhancing compound and a poly(vinyl acetal) in which at least 25 mol % of its recurring units comprise pendant phenol, naphthol, or anthracenol groups that are substituted with one or more electron-withdrawing groups.
Abstract:
A lithographic printing plate precursor which is capable of undergoing on-press development by supplying at least one of printing ink and dampening water and includes a support and an image-recording layer, wherein the image-recording layer contains at least one of compounds represented by the formulae (1) to (3) as defined herein.
Abstract:
A positive-working lithographic printing plate precursor is disclosed which comprises on a support having a hydrophilic surface or which is provided with a hydrophilic layer a heat and/or light-sensitive coating including an infrared absorbing agent and a compound including a benzoxazine group.
Abstract:
A lithographic printing plate precursor capable of being subjected to on-press development by supplying at least one of printing ink and dampening water and including a support, an image-recording layer and optionally an undercoat layer between the support and the image-recording layer, wherein at least one of the undercoat layer and the image-recording layer contains at least one of a compound represented by the formula (1A) as defined herein and a compound including a structure represented by the formula (1B) as defined herein.
Abstract:
A negative-working lithographic printing plate precursor can be imaged with infrared radiation and processed in a single step using a single processing solution having a pH of from about 3 to 11. The precursor has a primary polymeric binder that comprises recurring units derived from one or more N-alkoxymethyl(meth)acrylamides, provided that such recurring units are present in the primary polymeric binder in an amount of at least 10% based on the total dry primary polymeric binder weight. In addition, the primary polymeric binder is present in an amount of from about 12 to about 70% based on total imageable layer dry weight. The imaged precursor can be processed off-press or on-press.
Abstract:
A lithographic printing plate precursor comprising a coating provided on a support having a hydrophilic surface, the coating containing thermoplastic polymer particles and an infrared radiation absorbing dye characterized in that the coating further comprises a phenolic stabilizer.
Abstract:
A polymerizable composition containing: (A) a binder polymer; (B) a compound having a polymerizable unsaturated group; and (C) a compound which has a triarylsulfonium salt structure and in which a sum of Hammett's a constants of all substituents bonded to the aryl skeleton is larger than 0.46.
Abstract:
The invention has a support, a recording layer provided on the support, and a protective layer containing a hydrophilic polymer and silica-coated organic resin fine particles provided as the uppermost layer. The organic resin fine particles are preferably composed of at least one resin selected from the group consisting of polyacrylic acid resins, polyurethane resins, polystyrene resins, polyester resins, epoxy resins, phenolic resins, and melamine resins, and the protective layer preferably contains a mica compound.
Abstract:
A method of making a lithographic printing plate includes the steps of: a) providing a lithographic printing plate precursor including (i) a support having a hydrophilic surface or which is provided with a hydrophilic layer, (ii) a coating on the support including a photopolymerizable layer, and, optionally, an intermediate layer between the photopolymerizable layer and the support, wherein the photopolymerizable layer includes a polymerizable compound and a polymerization initiator, b) image-wise exposing the coating in a plate setter, c) optionally, heating the precursor in a pre-heating unit, d) developing the precursor off-press in a gumming unit by treating the coating of the precursor with a gum solution, thereby removing the non-exposed areas of the photopolymerizable layer from the support, wherein the photopolymerizable layer further includes a polymer containing an acid group and a basic nitrogen-containing compound capable of neutralizing the acid group, or wherein the photopolymerizable layer further includes a polymer containing an acid group which is neutralized by a basic nitrogen-containing compound.
Abstract:
A thermal negative type lithographic printing original plate has a photosensitive layer featuring high sensitivity, excellent reproducibility in FM screening, and excellent print durability and chemical resistance at a minute image portion. A photosensitive composition for the photosensitive layer contains an alkali soluble resin having a monomer unit represented by the formula (I), a silane coupling agent represented by the formula (II), an infrared absorber, a radical polymerization initiator, and a polymerizable compound having an ethylenic double bond and an amount of the silane coupling agent is from 15 to 40% of the photosensitive composition by mass.