Abstract:
In some embodiments, an actuation system includes a plurality of threaded member portions, a plurality of roller nuts, a driving member configured to receive mechanical energy from a power source, a plurality of driven members, and a magnetorheological (MR) fluid disposed between the plurality of driven members and at least one braking surface. An output member may be coupled between the rotor system and either the plurality of threaded member portions or the plurality of roller nuts and configured to translate linearly in response to the threaded member portions advancing or receding within the roller nuts.
Abstract:
One example of an actuation system for an active blade element of a rotor blade includes an actuator system coupled to a linear transmission system. The actuator system attaches to a structure within a rotor blade and provides a linear motion in a direction that is spanwise to the rotor blade. The linear transmission system is coupled with the actuator system and to an active blade element attached to the rotor blade. The linear transmission system receives the linear motion provided by the actuator system, and responsively provides at least a partial rotation of the active blade element about an axis of the linear transmission system which is in the direction that is substantially parallel to the spanwise axis of the rotor blade.
Abstract:
A modular top system for a vehicle is provided. In various embodiments, the system includes a plurality of rail sections, a plurality of corner brackets for connecting the rail sections to form a frame, and a flexible, collapsible cover to be deployed over and connected to the frame. The modular top system can additionally include a plurality of cover connecting devices disposable on a periphery of each of the sides of the cover. Each connecting device is for removably connecting each respective cover side to the frame to deploy the cover over and connect the cover to the frame. Each rail section can comprise at least one assembly connector for connecting any of a plurality of system assembly components to the respective rail section, and/or at least one accessory connector for connecting at least one modular top accessory to the respective rail section.
Abstract:
A test system for testing a sensor system includes a high-impedance resistor for forming a voltage divider with any corrosion or foreign substance that might be present between a signal conductor and a ground conductor. While a voltage is applied across the voltage divider, the voltage can be measured across the high-impedance resistor for determining whether an undesirable amount of conductance exists between the signal wire and ground. The test system also includes switching means for switching between any number of signal wires of a system undergoing testing.
Abstract:
An adapter is configured to hold a loose tube fiber cable and is mountable into a fusion splicer. The adapter includes a clamp base having a first and second grooves, each groove having a centerline, a width and a depth. The depth of the second groove is greater than the depth of the first groove, such that a shoulder is formed between the first and second grooves. The centerlines of the grooves align. This allows for the loose tube fiber cable or splice-on connector to be properly positioned within the grooves. The first groove is V-shaped. The second groove may be V-shaped, U-shaped or square-shaped. A clamp cover seats on the clamp base. The clamp cover has a compressible pad which, when the clamp cover is placed into a facing relationship with the clamp base, the pad aligns with the first groove.
Abstract:
A computer implemented method performed by a composite electrical load monitoring system includes determining, at a first time instant during a duration, a first margin between a first reading of a first electrical parameter and a first electrical parameter limit for a first power source, and determining, at the first time instant during the duration, a second margin between a second reading of a second electrical parameter and a second electrical parameter limit for a second power source. The method further includes determining, after the first time instant, that the first margin is less than the second margin in response to determining the first margin and the second margin, and displaying, in a display device and within the duration, an identifier for the first power source in response to determining that the first margin is less than the second margin.
Abstract:
A rotating sealing system includes a non-metallic rotating seal configured to be attached to a rotating shaft. The rotating seal is configured to rotate with the rotating shaft about an axis. The rotating sealing system includes a stationary sealing surface configured to be attached to a stationary housing positioned around the rotating shaft. The stationary sealing surface is substantially parallel to the axis. The rotating seal is configured to seal with the stationary sealing surface as the rotating shaft rotates.
Abstract:
One aspect of a method of manufacturing a honeycomb core includes positioning a first thermoplastic columnar cell adjacent a second thermoplastic columnar cell, modifying a thermoplastic property of the first thermoplastic columnar cell, wherein the modified thermoplastic property permits joining a circumferential surface of the first thermoplastic columnar cell to a circumferential surface of the second thermoplastic columnar cell. The method also includes joining the circumferential surface of the first thermoplastic columnar cell having the modified thermoplastic property to the circumferential surface of the second thermoplastic columnar cell resulting in the honeycomb core.
Abstract:
An electro-hydraulic on-blade actuation system includes a pair of linear motors, a pair of flexible bladders and a pair of hydraulic units. Each linear motor outputs linear force in response to input. The pair of flexible bladders attach to opposite sides of a rotorcraft blade. Each hydraulic unit connects a linear motor to a flexible bladder to hydraulically transmit the linear force of the linear motor to the flexible bladder to actuate the rotorcraft blade.
Abstract:
A method of repairing a component comprises identifying a non-compliant surface of the component, wherein the non-compliant surface is not within an allowable tolerance, cold spraying a powder comprising a metal onto the non-compliant surface, and forming a coating comprising the metal over the non-compliant surface, wherein an outer surface of the coating is within an allowable tolerance. In an embodiment, the method of repairing an outer component further comprises machining the outer surface of the coating. In an embodiment, the component is a shaft, a rotor mast, an input quill, or a bearing. In an embodiment, the component contains electronic equipment during the cold spraying, and wherein the cold spraying does not damage the electronic equipment. In an embodiment, the component is repaired without subjecting the component to a hydrogen embrittlement bake.