Abstract:
The invention provides a motor comprising a stator and a rotor. The stator core includes a laminated stator core made of laminated stator core plates in which straight cut surfaces are formed on a circular outer peripheral surface of the laminated stator core plates. The straight cut surfaces of the laminated stator core plates are circumferentially displaced every predetermined laminated stator core plates so that the straight cut surfaces are uniformly distributed in an axial and a circumferential direction of the laminated stator core. Therefore, a flow passage for lubricating oil is ensured, while local magnetic saturation of the stator core is dissolved and a cogging torque and an induced voltage waveform distortion rate are improved.
Abstract:
Although in a conventional permanent magnet type synchronous motor, cogging torque is reduced by displacing permanent magnets of a rotor in a circumferential direction or displacing a stator core in a circumferential direction, since the skew so produced reduces the output of the motor and moreover the winding work of windings cannot be automated to make the resulting motor highly expensive, split cores are provided which solves those problems and enables the winding work of windings to be automated so as to obtain an inexpensive and high-output motor.There are provided a plurality of split cores (100) made up of laminated iron cores each having formed thereon a tooth (6), and a yoke (5) and a pole piece (9) which are made to connect to the tooth (6) at both ends thereof, and arranged and connected together into an annular shape to make up a stator, characterized in that both ends of the yokes (5) and both ends of the pole pieces (9) are displaced in one circumferential direction by laminated iron core from a top laminated layer to a bottom laminated layer of the iron cores of the split cores.
Abstract:
2m sets (m being a natural number of 2 or more; and m=2 in embodiments) of teeth (31b to 34b) and 2m−1 slots (41, 42, 43) are disposed alternately in an axial direction; those of windings (36, 37, 38) accommodated in the slots (41, 42, 43), which are each accommodated in the slots (41, 42, 43) spaced apart by m from each other, are connected in line, so that exciting directions are opposite; and phases of magnetic fluxes passed through the teeth (31b to 34b) are displaced by 360°/2m from one another. Therefore, a thin and high-powered claw pole motor can be produced by disusing a portion of the winding which does not contribute to a torque (i.e., a crossover portion) and commonly using a magnetic path in each phase through return passes (31a to 34a). Moreover, a magnetic circuit of a wave winding motor is formed and hence, the output torque can be increased, as compared with a salient pole concentrated winding motor.
Abstract:
The motor includes a rotor including N-pole magnets and S-pole magnets located alternately along a circumferential direction of said AC motor, a stator core including a plurality of partial cores arranged coaxially along an axial direction of said AC motor each of said partial cores including a plurality of stator poles located along said circumferential direction so as to be on the same circumference, and a plurality of loop-like windings each of which extends in said circumferential direction while passing through, in said axial direction, interpole spaces between each two adjacent stator poles in said circumferential direction. The a phase angle difference between each adjacent two of said stator poles in said circumferential direction of the same one of said partial cores is set at a value smaller than 360 degrees for each of said partial cores.
Abstract:
A stator of an electric motor includes a stator core including an annular yoke. The stator core includes a plurality of teeth formed on, for example, an inner periphery of the yoke and has a coil wound on each of the teeth. Each of the teeth includes first and second end portions opposed to each other in a radial direction of the stator core. The first end portion is connected to the yoke. The second end portion is formed with an axially extending projection extending in an axial direction of the stator core. A coil receiving groove is defined between the axially extending projection and the yoke. The axially extending projection includes a distal end portion in the axial direction, and a root portion adjoining a bottom of the coil receiving groove. In the radial direction, a thickness of the root portion is greater than a thickness of the distal end portion.
Abstract:
The present invention is a slow-speed, large-scale generator and assembly procedure for that generator. The magnet is partitioned and assembled piece-by-piece after the rotor and stator have been attached. Guides are used to arrange the magnets so as to give skew to the overall magnet assembly. The shoes of the teeth of the stator have subteeth. The generator is located in the middle of the height of the tower, rather than at the top. The invention makes manufacturing easier and has reduced cogging torque, making large-scale, slow-speed operation more feasible. The efficiency and thus reduced weight of the direct-drive allows the device to be located such that a tower can be smaller and easier to construct and have fewer components.
Abstract:
The invention is a generator and cooling mechanism. The generator includes a rotor comprising a shaft with a skewed alignment of magnets on a ring, a stator of toothed laminations with coils wound around the teeth, and a housing with cooling chambers. The housing has annular subchambers arranged successively along the length of the generator in such a way that cooling fluid must flow to the opposite side of the generator to pass into the next chamber. Because the housing is highly heat conductive, this structure of annular subchambers increases the uniformity of the fluid temperature.
Abstract:
The present invention relates to a stackable lamination for rotors of electric motors having inclined or helical slots, and a method for manufacturing the lamination. The lamination comprises at least one boss projecting from a face thereof for coupling with a second lamination in the same pack. The two coupled laminations are rotated according to an offset angle. Advantageously, a boss portion has a lower thickness than the remaining portions to allow the same boss to be coupled with a matching boss of the second lamination, the two coupled bosses being angularly offset according to a preset angle. The reduction in the boss thickness is carried out during the manufacturing step of the lamination.
Abstract:
A rotor-stator structure for electrodynamic machinery is disclosed to, among other things, minimize magnetic flux path lengths and to eliminate back-iron for increasing torque and/or efficiency per unit size (or unit weight) and for reducing manufacturing costs. In one embodiment, an exemplary rotor-stator structure can comprise a shaft defining an axis of rotation, and a rotor on which at least two magnets are mounted on the shaft. The two magnets can be cylindrical or conical magnets having magnetic surfaces that confront air gaps. In some embodiments, substantially straight field pole members can be arranged coaxially and have flux interaction surfaces formed at both ends of those field poles. Those surfaces are located adjacent to the confronting magnetic surfaces to define functioning air gaps, which are generally curved in shape.
Abstract:
A stepping motor includes: a stator having main magnetic poles each having small stator teeth on its tip, a core-back portion that connects outer portions of the poles, and windings wound around the poles; and two sets of rotor units that are arranged in an axial direction and face the stator with an air gap therebetween. Each rotor unit consists of two rotor cores that are separated in the axial direction and a magnet sandwiched thereby and magnetized in the axial direction. Each rotor core has small rotor teeth around its outer surface. The rotor cores of each rotor unit are deviated by ½ pitch of the small rotor teeth, and the two rotor units are arranged to make the magnetic polarities of the small rotor teeth of the adjacent two rotor cores identical. A magnet thickness Tm and a rotor core thickness Tc satisfy 0.25≦Tm/Tc≦0.45.