Abstract:
Systems and methods for providing call verification to prevent voice phishing, comprising: receiving a call request from a service provider to establish a call with a client device associated with the client of the service provider; verifying the identity of the service provider; transmitting a notification to the client device that includes an indication that an incoming call is from a verified service provider; receiving verification information about the client; verifying the identity of the client; and establishing the call between the service provider and the client after both the identity of the service provider and the identity of the client are verified.
Abstract:
Systems and methods performed by an IP telephony system allow a user to request that his IP telephony device be set into a conference calling mode for an indefinite period of time. When the user's IP telephony device is in the conference calling mode, all parties that attempt to call the user's IP telephony device are added to a conference bridge tied to the user's IP telephony device. All incoming calls are treated in this fashion until the user cancels the conference calling mode and returns to a normal calling mode.
Abstract:
A proxy server of an Internet protocol (IP) telephony system determines when a call setup message generated by a first of the IP telephony system's customers is directed to a second of the IP telephony system's customers. When that occurs, the call setup message is forwarded directly to a call cluster operated by the IP telephony system and that services the second customer. As a result, the call is handled internally by the IP telephony system, and there is no need to involve a second telephony system in conducting the requested call. The proxy server may also insert information into the call setup messaging to flag the call as an internal call between two customers of the IP telephony system.
Abstract:
A method and apparatus for user location registration comprising determining, by a first network service provided by a first network, subscriber location information associated with a first user communication device registered with the first network, wherein the subscriber location information includes a network identifier of the first device, and wherein the network identifier is not obtained via session initiation protocol (SIP) messaging received from the first device; receiving, by the first network service, a broadcast location request for the subscriber location information in response to a call initiated from a second user communication device wherein receiving the broadcast location request further includes determining subscriber identity information from the broadcast location request, and determining that the subscriber identity information is associated with the subscriber location information; and sending, by the first network service, the determined subscriber location information in response to the broadcast location request.
Abstract:
Methods and apparatus for providing call flow information to devices associated with call flow destinations are provided herein. In some embodiments, a method for providing call flow information to a terminal device comprises receiving a communication specifying an initial destination from a calling party, and at least one of assigning the received communication to a terminal device associated with the initial destination and an alternate destination, forwarding the received communication from a terminal device associated with the initial destination to a terminal device associated with the alternate destination, or re-assigning the received communication to a terminal device associated with the alternate destination rather than with the initial destination responsive to a call set up failure. A call flow indicator is generated and transmitted to the terminal device associated with the alternate destination, the call flow indicator including an identifier of the initial destination and an identifier of the alternate destination.
Abstract:
Systems and methods of preventing an Internet service provider from identifying a stream of data packets as carrying a voice over Internet protocol telephony communication can make use of encryption techniques to prevent the Internet service provider from examining the content of the data packets. Also, multiple communications channels may be established between a telephony device and elements of an IP telephony system. A stream of data packets bearing the media of an IP telephony communication is then separated into sub-streams, and each sub-stream is sent through a different one of the communications channels. This prevents an Internet service provider from identifying a stream of data packets as bearing the media of an IP telephony communication based on a pattern in the data traffic.
Abstract:
A system and method are disclosed herein for providing a unidirectional outage bypass for incoming communications via a hosted Voice-over Internet Protocol (VoIP) private branch exchange (PBX) system to a session initiation protocol (SIP) device. An outage monitoring system is in communication with both the unidirectional bypass system and one or more bypass enablers that act at the direction of the unidirectional bypass system. The outage monitoring system detects outages and overloads, as well as, network failures between network components, the VoIP PBX, Client Devices and the public switched telephone network (PSTN). The unidirectional bypass system, in response to detection of an outage, determines error-handling procedures for the unidirectional bypass based on bypass configuration data. The bypass enablers forward incoming communications between the PSTN and a bypass destination following a bypass route in accordance the error-handling procedures, by bypassing components that are currently experiencing failures or overloads.
Abstract:
A system and method is disclosed herein for providing a bidirectional outage bypass for a hosted voice-over Internet protocol (VoIP) private branch exchange (PBX) system. An outage monitoring system is in communication with both the bidirectional bypass system and one or more bypass enablers that act at the direction of the bidirectional bypass system. The outage monitoring system detects outages and overloads, as well as, network failures between the VoIP PBX and the public switched telephone network (PSTN). The bidirectional bypass system, in response to detection of an outage, determines error-handling procedures for the bidirectional bypass based on bypass configuration data. The bypass enablers forward outgoing communications between a client device and the PSTN, in accordance the error-handling procedures, by bypassing components that are currently experiencing failures or overloads. The bypass enablers forward incoming communications for the VoIP PBX to an alternative destination in accordance with the error-handling procedures.
Abstract:
Method and apparatus for voice traffic management in a data network includes establishing a default maximum bandwidth setting at a LAN egress port when voice-type traffic is not present in a LAN portion of the data network, detecting voice-type traffic, reducing the bandwidth setting at the LAN egress port to effect a change in a rate of non voice type traffic and monitoring non voice type traffic and voice quality statistics to determine if the rate of non voice type traffic entering the data network has changed. Once the desired change has occurred, performing a linear increase of the bandwidth setting at the LAN egress port to a first value while monitoring voice quality statistics, determining if voice quality has degraded during increase of the bandwidth setting and repeating the last two steps if voice quality has not degraded.
Abstract:
A system and method are disclosed herein for providing mitigation of VoIP PBX fraud while having minimal impact on authorized VoIP PBX users. The method includes a system for detecting potential fraud based on multiple and configurable fraud indicators as well as historical data, which can be customized for individual users or groups, which in turn can trigger the other parts of the system to mitigate fraud. The system can terminate in-process calls that are potentially fraudulent and reset the network access credentials for the user accounts or device(s) that have been potentially compromised. The system can use historical data to block further calls from the compromised user accounts or devices to specific locations where the presumed fraudulent calls were directed. In a further aspect, the system and method can automatically reset the network access credentials for authorized users with minimal down time.