Abstract:
An internal impedance of an electrical storage device is measured by using a signal of a frequency which ions in the electrical storage device are difficult to follow (e.g., a frequency equal to or higher than 10 kHz), and an internal temperature of the electrical storage device is calculated from a measured value of the internal impedance.
Abstract:
A current sensor includes a first magnetic sensor and a second magnetic sensor which are configured to detect an induced magnetic field from target current to be measured flowing through a current line. The first and second magnetic sensors each include a magnetoresistive element that includes a free magnetic layer and a hard bias layer applying a bias magnetic field to the free magnetic layer. The bias magnetic field in the magnetoresistive element of the first magnetic sensor is oriented opposite to the bias magnetic field in the magnetoresistive element of the second magnetic sensor.
Abstract:
A magnetic balance type current sensor includes: a magnetic detection bridge circuit of which output varies due to an induced magnetic field from a current wire; a magnetic field attenuation unit that attenuates the induced magnetic field that acts on a magnetoresistive effect element; and a feedback coil which generates a cancel magnetic field that cancels the induced magnetic field in accordance with the output of the magnetic detection bridge circuit, and through which a current corresponding to the current to be measured flows when it enters a balanced state in which the cancel magnetic field and the induced magnetic field cancel each other, wherein the feedback coil is provided in such a manner that a direction of the cancel magnetic field that acts on the magnetic field attenuation unit is opposite to a direction of the induced magnetic field that acts on the magnetic field attenuation unit.
Abstract:
A current sensor includes a first current path including a first flat-shaped portion, and a first magnetoelectric conversion element arranged on the first current path and configured to detect magnetism generated when a current to be measured flows through the first current path, wherein the current sensor measures the current to be measured of a device to which the first current path is connected, a first conductive convex portion is provided, in the first current path, in a direction in which the current to be measured flows, and the first magnetoelectric conversion element is arranged at a position on the first current path, at which a magnetic flux density due to the current to be measured of a minimum frequency used in the device and a magnetic flux density due to the current to be measured of a maximum frequency used in the device substantially coincide with each other.
Abstract:
An Fe-based amorphous alloy powder of the present invention has a composition represented by (Fe100-a-b-c-x-y-z-tNiaSnbCrcPxCyBzSit)100-αMα. In this composition, 0 at %≦a≦10 at %, 0 at %≦b≦3 at %, 0 at %≦c≦6 at %, 6.8 at %≦x≦10.8 at %, 2.2 at %≦y≦9.8 at %, 0 at %≦z≦4.2 at %, and 0 at %≦t≦3.9 at % hold, a metal element M is at least one selected from the group consisting of Ti, Al, Mn, Zr, Hf, V, Nb, Ta, Mo, and W, and the addition amount α of the metal element M satisfies 0.04 wt %≦α≦0.6 wt %. Accordingly, besides a decrease of a glass transition temperature (Tg), an excellent corrosion resistance and high magnetic characteristics can be obtained.
Abstract:
A current sensor includes a current path to be measured, a neighboring current path that is provided in the vicinity of the current path to be measured, first and second magnetoelectric transducers having a main sensitivity axis parallel to a direction of a magnetic field generated by a current to be measured flowing in the current path to be measured, and are provided so that the directions of the magnetic fields generated by the current to be measured are applied in mutually opposite directions, and third and fourth magnetoelectric transducers having a main sensitivity axis being non-orthogonal to a direction of a magnetic field generated by the neighboring current while being orthogonal to the direction of the magnetic field generated by the current to be measured, and are provided so that the directions of the magnetic fields generated by the current to be measured are applied in mutually opposite directions.
Abstract:
A current sensor includes a first magnetic sensor and a second magnetic sensor which are configured to detect an induced magnetic field from target current to be measured flowing through a current line. The first and second magnetic sensors each include a magnetoresistive element that includes a free magnetic layer and a hard bias layer applying a bias magnetic field to the free magnetic layer. The bias magnetic field in the magnetoresistive element of the first magnetic sensor is oriented opposite to the bias magnetic field in the magnetoresistive element of the second magnetic sensor.
Abstract:
A current sensor including a magnetic detecting bridge circuit which is constituted of four magneto-resistance effect elements with a resistance value varied by application of an induced magnetic field from a current to be measured, and which has an output between two magneto-resistance effect elements. The four magneto-resistance effect elements have the same resistance change rate, and include a self-pinned type ferromagnetic fixed layer which is formed by anti-ferromagnetically coupling a first ferromagnetic film and a second ferromagnetic film via an antiparallel coupling film therebetween, a nonmagnetic intermediate layer, and a soft magnetic free layer. Magnetization directions of the ferromagnetic fixed layers of the two magneto-resistance effect elements providing the output are different from each other by 180°. The magnetic detecting bridge circuit has wiring symmetrical to a power supply point.
Abstract:
A current sensor includes a first current path, a second current path disposed parallel to the first current path, and a pair of first magnetic sensors. The first current path has a pair of main surfaces and includes a plate-shaped first region. The second current path has a pair of main surfaces and includes a plate-shaped second region. The first magnetic sensors are arranged on the respective main surfaces in the first region such that sensing axes of the first magnetic sensors are parallel to the respective main surfaces in the first region. The first magnetic sensors are configured to sense a magnetic field generated by a target current flowing through the first region. The second region is placed such that the main surfaces in the second region are perpendicular to the sensing axes of the first magnetic sensors.
Abstract:
A current sensor includes a substrate, a conductive body being provided above the substrate and extending in one direction, and magnetoresistance effect elements being provided between the substrate and the conductive body and outputting output signals owing to an induction magnetic field from a current to be measured being conducted through the conductive body, wherein each of the magnetoresistance effect elements has a laminated structure including a ferromagnetic fixed layer whose magnetization direction is fixed, a non-magnetic intermediate layer, and a free magnetic layer whose magnetization direction fluctuates with respect to an external magnetic field, the ferromagnetic fixed layer is a self-pinned type formed by antiferromagnetically coupling a first ferromagnetic film and a second ferromagnetic film through an antiparallel coupling film, the Curie temperatures of the first ferromagnetic film and the second ferromagnetic film are approximately equal, and a difference between the magnetization amounts thereof is substantially zero.