Abstract:
An EP catheter includes a tubular body having a proximal region, a neck region, and a distal portion predisposed into a single shallow helical fixed-diameter loop configuration and including a plurality of diagnostic electrodes. In deflectable catheter forms, at least one activation wire extends through at least a portion of the proximal region of the catheter body and is adapted to deflect the up to approximately 180 degrees relative to the proximal region. The catheter can be operated manually by a clinician or via a clinician-surrogate such as a computer processor-controlled surgical system. In addition, a variety of localization, visualization, and/or orientation-specific elements can be incorporated into the devices described, depicted, and claimed herein (e.g., metallic coil members, active impedance emitting or receiving electrodes, fluoroscopically opaque materials, and the like).
Abstract:
In various embodiments, a catheter comprising an expandable electrode assembly or basket is provided. In specific embodiments, the basket is particularly useful for mapping electrical activity at one or more locations within the heart. The basket can comprise a plurality of bendable or deflectable arms. At least one of the arms may have varied flexibility over its length in the form of one or more discontinuities of stiffness or flexibility at an elbow region or other variances in flexibility over the arm's length. Such variance in flexibility may allow the arm to assume a different bent configuration or respond to external factors more positively than possible with an arm having a static or near static flexibility or stiffness over its length.
Abstract:
A catheter includes a flexible tubing having a proximal end and a distal end. The catheter also includes an electrode assembly attached to the distal end of the flexible tubing and including a first magnet therein. The electrode assembly including an electrically conductive tip electrode and an electrically nonconductive coupler which is connected between the tip electrode and the distal end of the flexible tubing. The electrically conductive tip electrode comprises a hollow elongated tip electrode including a sidewall provided with one or more elongated gaps extending through the sidewall. The one or more elongated gaps providing flexibility in the sidewall for bending movement of the tip electrode relative to a longitudinal axis of the catheter body. The first magnet is responsive to an external magnetic field to selectively position and guide the electrode assembly within a body of a patient.
Abstract:
A flexible tip electrode for an ablation catheter and methods for making the same are disclosed. The electrode has a surface configuration that improves flexibility of the electrode. Also, the surface configuration may allow electrode lengthwise freedom of movement, such that the electrode may be shortened when pressed against the target tissue. A coil may be located in the electrode to bias the electrode toward a predetermined configuration.
Abstract:
An irrigated catheter with uniform cooling and/or uniform fluid distribution in longitudinally spaced apart elution holes by varying the diameter of a fluid delivery lumen. A number of elution holes are provided in a tip region of a catheter body, and these elution holes are in fluid communication with the lumen through ducts. The fluid deliver lumen has may provided with a flow constrictor to restrict flow of fluid towards the distal region.
Abstract:
A catheter for ablating body tissue of the interior regions of the heart includes a handle assembly, a shaft, and a distal tip section coupled to the distal end of the shaft. The distal tip section has a non-compliant and non-porous cap that has a tubular wall that defines a bore, and an ablation element that is housed inside the bore and spaced apart from the wall of the cap.
Abstract:
A catheter for sensing electrical events about a selected annulus region of the heart and for treating tissue in the selected annulus region has a handle assembly, and a shaft having a proximal end coupled to the handle assembly. The catheter also has a mapping element provided adjacent its distal end, and an ablation element positioned spaced apart along the shaft from the mapping element. The mapping element is first positioned distally to the desired treatment location in the selected annulus region and the distal location is mapped. The expandable member enclosing the ablation element is inflated and contrast medium injected to determine the orientation of the ablation element with respect to the annulus region. After the target ablation site is determined and the PV potentials verified, the ablation element is activated for therapeutic energy delivery.
Abstract:
A catheter for sensing electrical events about a selected annulus region of the heart and for treating tissue in the selected annulus region has a handle assembly, and a shaft having a proximal end coupled to the handle assembly. The catheter also has a mapping element provided adjacent its distal end, and an ablation element positioned spaced apart along the shaft from the mapping element. The mapping element is first positioned at the desired treatment location in the selected annulus region and the desired treatment location is mapped. The ablation element is then positioned at the desired treatment location by moving the mapping element away from the desired treatment location, and the desired treatment location is ablated.
Abstract:
A catheter-based method for coronary sinus mapping, pacing, and ablation, wherein a flexible electrode catheter, having a tip electrode with suspension structure, is pre-shaped to snugly fit into the coronary sinus, so that the tip electrode is positioned into the sinus; the distal section is deflected to expose a predetermined plurality of electrodes; and RF energy is then applied to the coronary sinus tissue through the electrodes to cause activation mapping, and/or ablation.
Abstract:
A catheter apparatus comprises an elongated catheter body having a distal end, a proximal end, and at least one fluid lumen extending longitudinally therein; and a plurality of flexible electrode segments on a distal portion of the catheter body adjacent the distal end, each pair of neighboring flexible electrode segments being spaced from each other longitudinally by a corresponding electrically nonconductive segment. Each flexible electrode segment comprises a sidewall provided with one or more elongated stiffness reductions extending through the sidewall, the one or more elongated stiffness reductions providing flexibility in the sidewall for bending movement relative to a longitudinal axis of the catheter body. The electrically nonconductive segment is substantially smaller in length than each of the corresponding pair of neighboring flexible electrode segments.