Abstract:
In various embodiments, coupling losses between a cylinder assembly and other components of a gas compression and/or expansion system are reduced or eliminated via valve-timing control.
Abstract:
The invention relates to systems and methods for rapidly and isothermally expanding and compressing gas in energy storage and recovery systems that use open-air hydraulic-pneumatic cylinder assemblies, such as an accumulator and an intensifier in communication with a high-pressure gas storage reservoir on a gas-side of the circuits and a combination fluid motor/pump, coupled to a combination electric generator/motor on the fluid side of the circuits. The systems use heat transfer subsystems in communication with at least one of the cylinder assemblies or reservoir to thermally condition the gas being expanded or compressed.
Abstract:
In various embodiments, compressed-gas energy storage and recovery systems feature one or more valves, which may be disposed within end caps of cylinder assemblies in which gas is expanded and/or compressed, for admitting fluid to and/or exhausting fluid from the cylinder assembly.
Abstract:
In various embodiments, energy-storage systems are based upon an open-air arrangement in which pressurized gas is expanded in small batches from a high pressure of, e.g., several hundred atmospheres to atmospheric pressure. The systems may be sized and operated at a rate that allows for near isothermal expansion and compression of the gas.
Abstract:
In various embodiments, cylinder assemblies are coupled in series pneumatically, thereby reducing a range of force produced by or acting on the cylinder assemblies during expansion or compression of a gas.
Abstract:
In various embodiments, energy-storage systems are based upon an open-air arrangement in which pressurized gas is expanded in small batches from a high pressure of, e.g., several hundred atmospheres to atmospheric pressure. The systems may be sized and operated at a rate that allows for near isothermal expansion and compression of the gas.
Abstract:
In various embodiments, compressed-gas energy storage and recovery systems include a cylinder assembly for compression and/or expansion of gas, a reservoir for storage and/or supply of compressed gas, and a system for thermally conditioning gas within the reservoir.
Abstract:
In various embodiments, systems for providing a constant electrical output from a compressed gas energy storage and recovery system include a hydraulic-pneumatic energy storage and recovery system configured to provide a varying pressure profile at least at one outlet, a hydraulic motor-pump in fluid communication with the outlet, and a control system for enabling the constant electrical output by controlling at least one of pressure, piston position, power, flow rate, torque, RPM, current, voltage, frequency, or displacement per revolution.
Abstract:
The invention relates to systems and methods including an energy conversion system for storage and recovery of energy using compressed gas, a source of recovered thermal energy, and a heat-exchange subsystem in fluid communication with the energy conversion system and the source of recovered thermal energy.