Abstract:
In certain embodiments, a two-stage precombustion chamber may be used to reduce engine NOx levels, with fueled precombustion chambers, while maintaining comparable engine power output and thermal efficiency. One or more fuel admission points may be located in either the first prechamber stage or the second prechamber stage. A more efficient overall combustion characterized by low levels of NOx formation may be achieved by a two-stage precombustion chamber system while generating very high energy flame jets emerging from the second prechamber stage into the main combustion chamber. A first prechamber stage may be substantially smaller than a second prechamber stage. The volumes and aspect ratios of the two prechamber stages, along with the location of the electrodes within the first stage prechamber, the hole patterns, angles and the separate fueling, may be selected to create a distribution of fuel concentration that is substantially higher in the first stage prechamber compared to the second prechamber stage.
Abstract:
The inventive subject matter provides apparatus, systems and methods for treating and delivering a fuel to a combustion chamber of an engine in order to improve efficiency of the engine. In one aspect of the invention, a fuel injector that cooperates with an internal combustion engine to combust a first fuel to produce power is presented. The fuel injector includes a fuel inlet, a pre-conditioning vortex chamber, and an excitation chamber. The fuel injector includes a vortex chamber that conforms a pulsed amount of the first fuel to produce a vortex that includes a coherent dynamic pressure wave. The fuel injector also includes an excitation mechanism that at least partially ignites the fuel.
Abstract:
In certain embodiments, a two-stage precombustion chamber may be used to reduce engine NOx levels, with fueled precombustion chambers, while maintaining comparable engine power output and thermal efficiency. One or more fuel admission points may be located in either the first prechamber stage or the second prechamber stage. A more efficient overall combustion characterized by low levels of NOx formation may be achieved by a two-stage precombustion chamber system while generating very high energy flame jets emerging from the second prechamber stage into the main combustion chamber. A first prechamber stage may be substantially smaller than a second prechamber stage. The volumes and aspect ratios of the two prechamber stages, along with the location of the electrodes within the first stage prechamber, the holes patterns, angles and the separate fueling, may be selected to create a distribution of fuel concentration that is substantially higher in the first stage prechamber compared to the second prechamber stage.
Abstract:
The invention relates to systems and methods for rapidly and isothermally expanding and compressing gas in energy storage and recovery systems that use open-air hydraulic-pneumatic cylinder assemblies, such as an accumulator and an intensifier in communication with a high-pressure gas storage reservoir on a gas-side of the circuits and a combination fluid motor/pump, coupled to a combination electric generator/motor on the fluid side of the circuits. The systems use heat transfer subsystems in communication with at least one of the cylinder assemblies or reservoir to thermally condition the gas being expanded or compressed.
Abstract:
The double action piston assembly is for an internal combustion engine and has a combustion chamber that has a double action piston connected to one end of a central power rod disposed within the combustion chamber. A first intake air port and a first exhaust port are located in the up side of the combustion chamber. A compression chamber is connected to the combustion chamber. A central power rod passes through the combustion chamber into the compression chamber and out the compression chamber. A fuel mixture is fed into the combustion chamber and ignition means adjacent to combustion chamber to ignite the fuel mixture. At the end of each stroke, the compression exhaust valves are opened and the intake ports and the exhaust ports are open to permit air from the compression chamber to pass through the conduits into the combustion chamber for full scavenging of the combustion chamber.
Abstract:
A method is disclosed for operating an internal combustion engine of the type having an engine cylinder with a reciprocating piston, first and second intake ports for admitting gas from an ambient air supply into the engine cylinder, first and second intake valves each arranged between a respective one of the intake ports and the engine cylinder, a non-return valve arranged in the second of the intake ports at a distance from the second intake valve and oriented to allow gas to flow only towards the engine cylinder, and a variable valve actuating system for controlling the opening and closing of at least the second intake valve. In the method of the invention, in at least one operating mode of the engine, the second intake valve is opened and closed, while the cylinder is fully isolated from the ambient air, to permit gas transfer between the cylinder and an auxiliary chamber temporarily defined by the part of the second intake port lying between the second intake valve and the non-return valve. The second intake valve is opened at a time when the pressure in the auxiliary chamber is greater than the pressure of the ambient air supply such that no gas escapes past the non-return valve.
Abstract:
A fuel injector nozzle and method for dispersing fuel during a normal combustion operation and a supplemental combustion operation, the fuel injector nozzle comprising: a plurality of first outlet openings configured to disperse fuel in a first arrangement; and a plurality of second outlet openings configured to collide with the fuel passing through the plurality of first openings to disperse fuel in a second arrangement, wherein either the first or second arrangement is selected by the position of the piston.
Abstract:
A toroidal chamber in a piston communicating through an orifice at a top face of the piston located in an internal combustion system, such as a spark ignition engine or a compression ignition engine. The chamber arranged to receive a fuel/air mixture so that a flame front, propagated in a main combustion chamber outside the toroidal chamber reaches the toroidal chamber, the fuel in the toroidal chamber burns. The burning creates pressure in the chamber that exceeds the pressure in the main combustion chamber. The combustion gas of high pressure is jetted out of the toroidal chamber into the main combustion chamber. The high pressure combustion gas jet generates turbulence and mixing in the main combustion chamber, contributing to an improved combustion. Accordingly, the power output and the thermal efficiency of the internal combustion system is improved.
Abstract:
Wall surfaces which define essentially circular recesses are constructed to deflect the flow of burning gases from a swirl chamber in a manner to either tighten the swirl formed therein or to improve the initial splitting of the frame in a manner which increases the amount of gases which are induced to undergo swirling in the recesses.
Abstract:
A combustion chamber formed in the crown of a piston for an indirect injection diessel engine is described the combustion chamber having an elongate entry channel adjacent the gas efflux of a precombustion chamber, the channel leading into four branches which generate vortices in the burning charge and which vortices are coherent and mutually self-reinforcing.