Abstract:
A display panel and a method for manufacturing the same are disclosed. The display panel includes: a first substrate, a touch spacer formed on a first substrate, a common electrode formed on the touch spacer, a second substrate opposing the first substrate, a sensing electrode facing the touch spacer on the second substrate and an alignment layer on the sensing electrode or the touch spacer, wherein the alignment layer has a thickness equal to or less than 500 Å.
Abstract:
A display device includes: a first display panel; a second display panel opposite to the first display panel; and an electro-optical active layer between the first display panel and the second display panel, wherein the first display panel includes a thin film transistor including a gate electrode, a source electrode, a drain electrode and a semiconductor layer, a gate line configured to transmit a gate signal to the gate electrode of the transistor and extending in a first direction, and a sensing electrode extending in the first direction and overlapping the gate line, where the sensing electrode and the gate electrode define a capacitor.
Abstract:
A three-dimensional image display device includes a luminance controller receiving a three-dimensional enable signal, a backlight data signal and at least one starting signal of a scan starting signal, a vertical blank starting signal and a backlight starting signal. The luminance controller outputs a backlight control signal and a backlight unit is operated based on the backlight control signal and is coupled to the luminance controller. The backlight data signal is based on a previous pulse of the starting signal and is applied from a first time when a current pulse of the starting signal starts to a second time when a next pulse of the starting signal starts.
Abstract:
A touch sensor configured to be disposed in a liquid crystal display panel includes a plurality of x-axis read-out lines crossing and insulated from a plurality of y-axis read-out lines and a plurality of sensor units. Each sensor unit includes a reset unit, a capacitance detector, a first output unit, and a second output unit. The reset unit outputs a first reset signal based on a first control signal. The capacitance detector changes the first reset signal based on a variation of a cell gap of the liquid crystal display panel caused by a touch event. The first output unit changes an electric potential of a corresponding x-axis read-out line in response to the first reset signal changed in the capacitance detector. The second output unit changes an electric potential of a corresponding y-axis read-out line in response to the first reset signal changed in the capacitance detector.
Abstract:
A display device includes: a first insulation substrate having an upper surface and a lower surface; a transparent conductive layer disposed on the upper surface of the first insulation substrate; a gate line disposed on the lower surface of the first insulation substrate; a gate insulating layer disposed on the gate line; a semiconductor layer disposed on the gate insulating layer; a data line disposed on the semiconductor layer and connected to a source electrode and a drain electrode facing the source electrode; and a pixel electrode electrically connected to the drain electrode, where the gate line, the gate insulating layer, the semiconductor layer and the data line are sequentially disposed on the lower surface of the first insulation substrate.
Abstract:
A three dimensional image display device, including: a display panel that alternately displays a left eye image and a right eye image, wherein a common voltage synchronized with a voltage reset signal is applied to the display panel and the voltage reset signal is maintained at a high level for a predetermined time before the voltage reset signal is input to the left eye image or the right eye image.
Abstract:
A display device includes: a first insulating substrate; a main pixel which is formed on the first insulating substrate and comprises a plurality of sub-pixels and a single sensing electrode; a second insulating substrate which faces the first insulating substrate; a sensing spacer formed on the second insulating substrate which faces the sensing electrode; and a contact electrode formed on the sensing spacer.
Abstract:
A method of displaying a stereoscopic image provides first light having a first wavelength and second light having a second wavelength different from the first wavelength to the a display panel according to left-eye and right-eye images displayed on the display panel. Color correcting data are generated by correcting at least one of left-eye color data corresponding to the left-eye image and right-eye color data corresponding to the right-eye image such that a first color coordinate according to the first light and a second color coordinate according to the second light coincide with each other with respect to the same color. The left-eye and right-eye images are displayed using light having wavelengths different from each other, so that a display quality of the stereoscopic image may be enhanced.
Abstract:
A display panel and a method for manufacturing the same are disclosed. The display panel includes: a first substrate, a touch spacer formed on a first substrate, a common electrode formed on the touch spacer, a second substrate opposing the first substrate, a sensing electrode facing the touch spacer on the second substrate and an alignment layer on the sensing electrode or the touch spacer, wherein the alignment layer has a thickness equal to or less than 500 Å.
Abstract:
A display apparatus includes a plurality of pixels. Each pixel includes a main pixel, a sub-pixel, and a boosting capacitor. The main pixel receives a data signal in response to a first gate signal and is charged with a main pixel voltage. The sub-pixel receives the data signal in response to a second gate signal, and is charged with a sub-pixel voltage. The boosting capacitor is provided between the main pixel and the sub-pixel to increase the main pixel voltage when the sub-pixel is charged with the sub-pixel voltage in response to the second gate signal.