Abstract:
The present invention provides a gas sensor, including: a sensor substrate provided with an electrode; and a thin layer of sensor material formed by spraying a solution in which metal oxide nanoparticles are dispersed onto the sensor substrate. The gas sensor is advantageous in that a sensor material is formed into a porous thin layer containing metal oxide nanoparticles having a large specific surface area, thus realizing high sensitivity on the ppb scale and a high reaction rate. Further, the gas sensor is advantageous in that it can be manufactured at room temperature, and the thickness of a sensor material can be easily adjusted by adjusting the spray time, so that a thin gas sensor or a thick gas sensor can be easily manufactured.
Abstract:
A display apparatus including a first substrate including a pixel area; a gate line disposed on the first substrate; a data line disposed on the first substrate and insulated from the gate line; an insulating layer pattern interposed between the gate line and the data line in an area where the gate line and the data line overlap; a gate insulating layer interposed between the gate line and the data line; a pixel electrode disposed in the pixel area; and a second substrate facing the first substrate.
Abstract:
The present disclosure relates to a thin film transistor array panel and a manufacturing method thereof. The method comprises: forming a thin film transistor on a substrate; forming a color filter adjacent to the thin film transistor and over the same substrate; depositing a first passivation layer on the color filter; coating a photosensitive film on the first passivation layer and exposing the photosensitive film to light using a first photomask to form a first photosensitive film pattern that comprises a first portion and a second portion that is thicker than the first portion, the first photosensitive film pattern exposing the first passivation layer around a circumference of the second portion; removing the exposed first passivation layer using the first photosensitive film pattern as an etch mask; blanket etching a whole surface of the first photosensitive film pattern until the first portion is removed to form a second photosensitive film pattern; depositing a conductive layer on the second photosensitive film pattern; and removing the second photosensitive film pattern to thereby selectively lift off portions of the conductive layer where a left behind portion forms a pixel electrode.
Abstract:
A color filter substrate includes a substrate, a black matrix disposed on the substrate, a color filter on a sub-pixel area partitioned by the black matrix, a common electrode disposed on the color filter to receive a common voltage, and an anti-reflective layer configured to prevent the reflection of light in the color filter substrate.
Abstract:
Provided is a thin-film transistor (TFT) substrate. The TFT substrate includes: an insulating substrate; a semiconductor pattern which is formed on the insulating substrate, the semiconductor pattern having a top surface and a bottom surface; a source electrode and a drain electrode which are disposed on the top and bottom surfaces of the semiconductor pattern, respectively; a gate electrode which is disposed alongside the semiconductor pattern with a gate insulating film interposed therebetween; a data line which is connected to the source electrode and extends in a first direction; a gate line which is connected to the gate electrode and extends in a second direction; and a pixel electrode which is connected to the drain electrode and is formed in a pixel region.
Abstract:
A liquid crystal display (LCD) panel with improved display characteristics includes a first display plate and a second display plate which face each other with a liquid crystal layer therebetween, a seal bonding the first display plate to the second display plate to prevent leakage of the liquid crystal layer, and an impurity blocking and liquid crystal flowing structure disposed inside a perimeter of the seal to prevent impurities from flowing from the seal to an active region in the first and second display plates while providing a flow path allowing liquid crystals to flow to the seal.
Abstract:
A color filter substrate includes a substrate, a black matrix disposed on the substrate, a color filter on a sub-pixel area partitioned by the black matrix, a common electrode disposed on the color filter to receive a common voltage, and an anti-reflective layer configured to prevent the reflection of light in the color filter substrate.
Abstract:
A color filter substrate includes a substrate, a black matrix disposed on the substrate, a color filter on a sub-pixel area partitioned by the black matrix, a common electrode disposed on the color filter to receive a common voltage, and an anti-reflective layer configured to prevent the reflection of light in the color filter substrate.
Abstract:
The present invention provides a method consisting of a step for analyzing a traffic receiving mirroring, a step for judging whether NAT (Network Address Translation) use of a client configuring and using a private network as well as a provided authorized IP (an Internet IP) is allowed or not, for analyzing and detecting the number of sharing terminals, a step for creating a database using data, and a step for formulating a policy by using information in database, so that when the users of a private network connect to Internet at the same time, permission or blocking of Internet use can be executed selectively.
Abstract:
In an array substrate, the array substrate includes an insulation member in each pixel area and a color filter layer that surrounds each insulation member. The color filter layer includes color filters having two or more colors that are different from each other, and a color filter is formed in each pixel area. An insulation member is arranged in each pixel area and all the insulation members include the same material. The insulation members are partially removed in each pixel area to form contact holes having the same size.