Abstract:
A signal reception apparatus for DS-CDMA communication system having a complex matched filter for despreading a received signal into I- and Q-components Di and Dq of despread signal. Dj and Dq are input to a path selection portion 13 for extracting a phase error in a pilot symbol block of the despread signal. A phase compensation signal is calculated according to the phase error in the portion 13. An information symbol is compensated according to the phase compensation signal. An electrical power is calculated from an average of the phase compensation signal of several slots for selecting paths to be received. The selected paths are combined with phase synchronized by a rake combiner 14.
Abstract:
The present invention offers a method and a circuit for generating codes enabling transmission of long-codes to start on a reverse channel in a shorter waiting time. The method involves corresponding a shift quantity between the beginning of a sequence M or long-codes cycle, and each timing to a combination of a plurality of masking data; determining a combination of masking data for timing to start generation of long-codes in response to a transmission request at a point of time as soon as possible; and shifting of an initial value of a vector according to the masking data.
Abstract:
Cells are searched at a high speed using an initial synchronization method and a receiver for a DS-CDMA inter base station asynchronous cellular system. A base band received signal is input to a matched filter and is correlated with a spread code supplied from a spread code generator. A signal electric power calculator calculates the electric power of the correlation output of the matched filter, and outputs the result to a long code synchronization timing determiner, a threshold value calculator, and a long code identifier. During the initial cell search, the spread code generator outputs a short code #0 that is common to the control channel of each of the base stations. After the long code synchronization timing has been determined, each of the segments of the N chips which constitutes a portion of the synthesized spread code sequence synthesized from a long code #i that is unique to each of the base stations and the short code #0 is sequentially replaced and output.
Abstract:
A signal characterizer for performing functional transformations such as Fast Fourier Transforms (FFTs), which converts an input serial analog signal into a plurality of parallel discrete signals using an analog-type serial-to-parallel converter. The discrete signals are then supplied to the input terminals of butterfly operation circuits to process the parallel discrete signals into a plurality of transformed signals. A switch supplies the transformed signals to a serial signal output terminal. The switch is controlled by a controller so that the input signal sequence is converted to a serial signal sequence according to a predetermined order.
Abstract:
The present invention provides a matched filter which can refresh an entire while keeping the speed of a calculation comparable to a small sized circuit. The first and second addition circuits of a matched filter of the present invention are classified into a plurality of groups, the first and second auxiliary adders replace functions for the groups of the first and second adders respectively. The outputs of the first and second adders are then inputted to the first and second subtractors, respectively, and the refreshing means appropriately refreshes the groups replaced by the first and second auxiliary adders. Further, the present invention decreases the number of auxiliary sapling and holding circuits to be used, and decides the refreshing intervals by considering the change of the voltage caused by leakage and other permissible errors of output voltage.
Abstract:
An object of the present invention is to provide a matched filter circuit of small size and consuming low electric power. Paying attention that a spreading code is a 1 bit data string, an input signal is sampled and held as an analog signal along the time sequence, classified into "1" and "-1" and the classified signals are added in parallel by capacitive coupling in a matched filter circuit according to the present invention.
Abstract:
The present invention has an object to provide a filter circuit for communication generative an effective digital output as well as an analog output in a filter circuit of low electric power consumption. The function speed of an A/D converting circuit is minimized by intermittently holding an analog output signal according to an experience that peak detection can be performed by partially sampling the signal after the acquisition.