Abstract:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of an integrated circuit device. In an embodiment, the method achieves improved control by forming a doped region and a lightly doped source and drain (LDD) region in a source and drain region of the device. The doped region is implanted with a dopant type opposite to the LDD region.
Abstract:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of integrated circuit device. In an embodiment, the method achieves improved control by forming a doped region and a lightly doped source and drain (LDD) region in a source and drain region of the device. The doped region is implanted with a dopant type opposite the LDD region.
Abstract:
The present disclosure provides a semiconductor device. The semiconductor device includes a silicon substrate. The semiconductor device includes first and second regions that are disposed in the substrate. The first and second regions have a silicon compound material. The semiconductor device includes first and second source/drain structures that are partially disposed in the first and second regions, respectively. The semiconductor device includes a first gate that is disposed over the substrate. The first gate has a first proximity to the first region. The semiconductor device includes a second gate that is disposed over the substrate. The second gate has a second proximity to the second region. The second proximity is different from the first proximity. The first source/drain structure and the first gate are portions of a first transistor, and the second source/drain structure and the second gate are portions of a second transistor.
Abstract:
A transistor includes a gate electrode disposed over a substrate. At least one composite strain structure is disposed adjacent to a channel below the gate electrode. The at least one composite strain structure includes a first strain region within the substrate. A second strain region is disposed over the first strain region. At least a portion of the second strain region is disposed within the substrate.