Abstract:
The present disclosure discloses an exemplary method for fabricating a gate structure comprising depositing and patterning a dummy oxide layer and a dummy gate electrode layer on a substrate; surrounding the dummy oxide layer and the dummy gate electrode layer with a sacrificial layer; surrounding the sacrificial layer with a nitrogen-containing dielectric layer; surrounding the nitrogen-containing dielectric layer with an interlayer dielectric layer; removing the dummy gate electrode layer; removing the dummy oxide layer; removing the sacrificial layer to form an opening in the nitrogen-containing dielectric layer; and depositing a gate dielectric; and depositing a gate electrode.
Abstract:
A method of forming a semiconductor device includes performing a first pre-amorphous implantation process on a substrate, where the substrate has a gate stack. The method further includes forming a first stress film over the substrate. The method also includes performing a first annealing process on the substrate and the first stress film. The method further includes performing a second pre-amorphous implantation process on the annealed substrate, forming a second stress film over the substrate, and performing a second annealing process on the substrate and the second stress film.
Abstract:
A method of forming a semiconductor device includes performing a first pre-amorphous implantation process on a substrate, where the substrate has a gate stack. The method further includes forming a first stress film over the substrate. The method also includes performing a first annealing process on the substrate and the first stress film. The method further includes performing a second pre-amorphous implantation process on the annealed substrate, forming a second stress film over the substrate, and performing a second annealing process on the substrate and the second stress film.
Abstract:
A method of forming an integrated circuit includes forming a gate structure over a substrate. At least one silicon-containing layer is formed in source/drain (S/D) regions adjacent to sidewalls of the gate structure. An N-type doped silicon-containing layer is formed over the at least one silicon-containing layer. The N-type doped silicon-containing layer has an N-type dopant concentration higher than that of the at least one silicon-containing layer. The N-type doped silicon-containing layer is annealed so as to drive N-type dopants of the N-type doped silicon-containing layer to the S/D regions.
Abstract:
A method of fabricating and a semiconductor device with multiple dislocation structures is disclosed. The exemplary semiconductor device includes gate structure overlying a top surface of a semiconductor substrate and a first gate spacer disposed on a sidewall of the gate structure and overlying the top surface of the substrate. The semiconductor device further includes a crystallized semiconductor material overlying the top surface of the semiconductor substrate and adjacent to a sidewall of the first gate spacer. The semiconductor device further includes a second gate spacer disposed on the sidewall of the first gate spacer and overlying the crystallized semiconductor material. The semiconductor device further includes a first stressor region disposed in the semiconductor substrate and a second stressor region disposed in the semiconductor substrate and in the crystallized semiconductor material.
Abstract:
The present disclosure provides a semiconductor device that includes a semiconductor substrate, a gate structure disposed on a surface of the substrate, and strained structures disposed in the substrate at either side of the gate structure and formed of a semiconductor material different from the semiconductor substrate. Each strained structure has a cross-sectional profile that includes a first portion that extends from the surface of substrate and a second portion that tapers from the first portion at an angle ranging from about 50° to about 70°. The angle is measured with respect to an axis parallel to the surface of the substrate.
Abstract:
A method includes forming a metal-oxide-semiconductor field-effect transistor (MOSFET), which includes forming a first dislocation plane adjacent to a gate electrode of the MOSFET, and forming a second dislocation plane adjacent to the gate electrode of the MOSFET. The first and the second dislocation planes are on a same side of the gate electrode, and extend into source/drain regions of the MOSFET.
Abstract:
The present disclosure provides a semiconductor device. The semiconductor device includes a silicon substrate. The semiconductor device includes first and second regions that are disposed in the substrate. The first and second regions have a silicon compound material. The semiconductor device includes first and second source/drain structures that are partially disposed in the first and second regions, respectively. The semiconductor device includes a first gate that is disposed over the substrate. The first gate has a first proximity to the first region. The semiconductor device includes a second gate that is disposed over the substrate. The second gate has a second proximity to the second region. The second proximity is different from the first proximity. The first source/drain structure and the first gate are portions of a first transistor, and the second source/drain structure and the second gate are portions of a second transistor.
Abstract:
A method of forming an integrated circuit includes forming a gate structure over a substrate. At least one silicon-containing layer is formed in source/drain (S/D) regions adjacent to sidewalls of the gate structure. An N-type doped silicon-containing layer is formed over the at least one silicon-containing layer. The N-type doped silicon-containing layer has an N-type dopant concentration higher than that of the at least one silicon-containing layer. The N-type doped silicon-containing layer is annealed so as to drive N-type dopants of the N-type doped silicon-containing layer to the S/D regions.
Abstract:
A semiconductor device having a strained channel and a method of manufacture thereof is provided. The semiconductor device has a gate electrode formed over a channel recess. A first recess and a second recess formed on opposing sides of the gate electrode are filled with a stress-inducing material. The stress-inducing material extends into an area wherein source/drain extensions overlap an edge of the gate electrode. In an embodiment, sidewalls of the channel recess and/or the first and second recesses may be along {111} facet planes.