Abstract:
A transparent conductive film and a fabrication method thereof are provided. The transparent conductive film includes a plurality of oxide atomic layers, containing a plurality of multi-oxide atomic layers, wherein a single multi-oxide atomic layer has more than one kind of uniformly mixed oxide. The method includes providing more than one kind of oxide precursor which is individually introduced into atomic layer deposition equipment through different sources, wherein the oxide precursors are consecutively introduced into the atomic layer deposition equipment, so that the oxide precursors are simultaneously present in the atomic layer deposition equipment, forming a uniform mixture for settling onto the substrate. Then, an oxidant is provided to react with the oxide precursors to form a single multi-oxide atomic layer. The above mentioned steps are repeated to form a plurality of multi-oxide atomic layers.
Abstract:
A wireless device (A) in a first antenna sector (40) is discovered using a directional antenna (322), which sends and receives signals in multiple antenna sectors. Multiple primary beacons are transmitted in corresponding primary beacon time slots (1P-4P), which correspond to the antenna sectors (10-40) and have associated secondary beacon time slots (1s-4s). A secondary beacon is received from the wireless device in a first secondary beacon time slot (4sA) associated with a first primary beacon time slot (4P) corresponding to the first sector, the secondary beacon being responsive to a first primary beacon included in the first primary beacon time slot. An additional first secondary beacon time slot (4s) is added in association with the first primary beacon time slot. The additional first secondary beacon time slot enables an additional wireless device in the first sector to send an additional secondary beacon in response to a subsequent first primary beacon included in the first primary beacon time slot.
Abstract:
The present invention provides a system (600), device (500) and method (400) for automatic partner selection in an existing Cooperative MAC (CMAC) protocol, which uses the Ready-to-Send (RTS), Clear-to-Send (CTS) and Partner-Clear-to-Send (PCTS) handshaking to establish cooperation. The present invention enables a “best” partner/relay (500.R.k) who is also willing to cooperate to relay information to a destination (500.D.J) for the transmitting device (i.e., the source), without the source (500.S.i) making a decision on partner selection. That is, the present invention provides a new mechanism by which the best partner/relay (500.R.k) that is also willing to cooperate will “step in” automatically without the source's involvement in selection of the partner/relay (500.R.k). This mechanism is contention-based and the partner is “selected” using local information only in a fully distributed manner.
Abstract:
Under the present invention, a wireless component such as an access point or a mobile device is configured to manage the buffering of newly transmitted TCP packets. Specifically, the wireless component can receive both forwarded TCP packets and newly transmitted TCP packets. If a set of newly transmitted TCP packets is received out of order(i.e., before a set of previously transmitted TCP packets that must be forwarded), one out of order (newly transmitted) TCP packet will be passed for each of a quantity of tokens present on the wirelesss component. Each out of order TCP packet that is not passed will be buffered. Once a previously requested forwarded TCP packet is received and passed, the quantity of tokens is restiored to a predetermined quantity, and a commensurate number of buffered TCP packets can be passed.
Abstract:
A method for deterministic directional discovery of neighbor devices by a device in a wireless network comprises dividing equally an access time to a discovery channel to predefined number of sector scanning periods (410), wherein each sector scanning period includes a predefined number of discovery sweep periods (430), and each discovery sweep period includes a predefined number of time slots (440); scanning the discovery channel in a single sector during a current sector scanning period (S310); transmitting a discovery frame towards each sector during each time slot of each discovery sweep period of the current sector scanning period (S320); checking if at least one response to a transmitted discovery frame has been received during the current sector scanning period (S330); and setting the device to scan the discovery channel in a next sector during a next sector scanning period, thereby sequentially accessing the predefined number of sector scanning periods (S35).
Abstract:
A method and wireless device merge multiple unsynchronized beacon groups in a wireless network, each beacon group including at least one wireless device. A first beacon is received from at least one first wireless device in a first beacon group (S514), the first wireless device having a first directional antenna. A second beacon is received from at least one second wireless device in a second beacon group that is not synchronized with the first beacon group (S516), the second wireless device having a second directional antenna. A first response beacon is relocated (S520) and sent (S522) to the first wireless device in the first beacon group. The relocated first response beacon instructs the first wireless device to relocate the first beacon. Accordingly, the second beacon, the relocated first response beacon, and the relocated first beacon are synchronized.
Abstract:
In a coordination-free rendezvous method for a communication network, time is divided into superslots with each superslot being further divided into slots. At least one first-class slot and at least one second-class slot are selected out of the slots of each superslot. The relative position between the first-class slot and the second-class slot is changed every superslot, thereby the first-class slots or the second-class slots between or among devices of the communication network may overlap each other in a periodic manner.
Abstract:
A method and apparatus discover hidden wireless devices in a wireless network using a directional antenna system, preventing partitioning of the wireless network. A first wireless device located in a first antenna sector is joined in response to an initial first beacon. First beacons are received from the joined first wireless device during corresponding first beacon periods. At least a second antenna sector is scanned during at least one first beacon period to listen for second beacons from a second wireless device in the second antenna sector, while remaining joined with the first wireless device. The first beacons are not received while the second antenna sector is scanned. The second wireless device is joined in response to an initial second beacon. Second beacons are then received from the joined second wireless device during corresponding second beacon periods, and the first beacons are received during the corresponding first beacon periods.
Abstract:
In a wireless communication network (300) comprising a plurality of devices (100), a method of discovering a route for transmitting data from a source device (110A) to a destination device (110D) via multi-hop relay, includes broadcasting from the source device (110A) a route discovery request for transmitting data to the destination device (HOD). The route discovery request includes: a first field indicating a hop-count limit, a second field indicating a number of slots, X, required for transmitting the data, a third field indicating an ID for the source device (110A), and a fourth field indicating an ID for the destination device (HOD). The source device (110A) then receives a route discovery response indicating a route from the source device (110A) to the destination device (HOD). The route discovery response includes a first field indicating a number of hops between the source device (110A) and the destination device (HOD).
Abstract:
A wireless network (300) operates with at least two different types of wireless devices, including Type-A wireless devices (320) that communicate using a first transmission scheme and Type-B wireless devices (310) that communicate using a second transmission scheme. Type-A wireless devices (320) can transmit Type-A beacons (325) using the first transmission scheme. Type-B wireless devices (310) can transmit and receive Type-B beacons (315) using the second transmission scheme. Type-B wireless devices (310) can also transmit Type-A beacons (325) using the first transmission scheme, but cannot receive the Type-A beacons (325). Before establishing communications in a new channel, a Type-B wireless device (310) performs power sensing to detect the presence of any non-Type-B wireless devices (200), and if such wireless devices (200) are detected, it switches to another channel. Otherwise, it transmits a Type-A beacon (325) and a Type-B beacon (315) to establish communications in the channel.