Abstract:
Dispensing devices can include buffers. This obviates the need for continually pumping the device to dispense spray or foam. A buffer can be spring loaded, spring loaded combination, elastomeric or gas, and can be in line or adjacent to a piston chamber. Such sprayers and foamers can be mounted upside down. With a buffer, a piston chamber can deliver a greater amount of liquid per unit time than can be dispensed through the nozzle(s). The fraction of liquid that cannot be dispensed can be sent to the buffer for dispensing after the piston downstroke has completed. Volume of the piston chamber and buffer, pressure response of the buffer, throughput of the nozzle, and the minimum opening pressure of the outlet valve can be arranged to restrict the outlet pressures of liquid droplets exiting the nozzle within a defined range.
Abstract:
A preform can be made from two different materials that do not bond together by a bi-injection process, using the same mold. First an outer preform can be fashioned first, then an inner preform molded through a center hole in the outer preform, and the preforms connected. Inner/outer preform materials can be different, e.g., PET/polyolefin or polyamide, or the same, e.g., PET/PET. To prevent mutual bonding during molding of the second, a non-stick coating can be sprayed on a surface portion of the first preform prior to molding, the second. Manufacturing order can be either outer/inner, or inner/outer, and the non-stick coating sprayed on the inside/outside of the perform first molded.
Abstract:
In exemplary embodiments of the present invention, Flair® based aerosol-type devices can be provided. Such devices utilize a combination of Flair® technology, pre-compression valves and aerosol like pressurization of the dispensed liquid. Such a dispensing device has a main body comprising a pressure chamber, the latter being provided with a pressure piston and a pressure spring. The device further has a piston and a piston chamber which draws liquid from a reservoir and fills the pressure chamber with that liquid as a user operates the trigger in various compression and release strokes. The piston chamber has both an inlet valve and an outlet valve. In a dispensing head a valve is provided to regulate the strength of the flow and preclude leakage. Once the liquid is sufficiently pressurized, it can be dispensed by a user opening an activation valve, such as by pressing on an activation button, and spray can be abruptly stopped by a user ceasing to push on such button. Or, for example, in alternate embodiments without an activation button, once the liquid is sufficiently pressurized, continuous spray occurs until the pressure chamber is emptied. By repeatedly pumping the trigger before the pressure chamber is fully emptied, continuous spray can be achieved. By designing the input volume to be amply greater than the volume of the pressure chamber, continuous spray with fewer pumping strokes can be implemented.
Abstract:
In exemplary embodiments of the present invention, “Flairosol” dispensing devices can be provided. Such devices utilize a combination of Flair® technology, pre-compression valves and aerosol-like pressurization of the dispensed liquid. Such a dispensing device has, for example, a main body comprising a pressure chamber, the latter being provided with a pressure piston and a pressure spring. The device further has a piston and a piston chamber which draws liquid from a container, for example, the inner container of a Flair® bottle, and fills the pressure chamber with that liquid as a user operates a trigger in various compression and release strokes. The piston chamber has both an inlet valve and an outlet valve, which serve to prevent backflow. Liquid exiting the piston chamber under pressure (supplied by a user pumping the trigger) enters a central vertical channel which is in fluid communication with both the pressure chamber (above the pressure piston) and a dome valve provided near the outlet channel at the top of the dispensing head. The dome valve has a preset pressure, such that once exceeded by the liquid, opens and allows for a spray. If the liquid pressure drops below such preset pressure, the dome valve closes off the outlet channel, which serves to regulate the strength of the flow and preclude leakage. Alternatively, in an activated embodiment, for example, once the liquid is sufficiently pressurized, it can be dispensed by a user allowing the dome valve to open by pressing on an activation button that removes a dome lock.
Abstract:
The invention relates to a container for a product for dispensing, comprising a relatively stiff outer container (2) having at least one dispensing opening (3), and a deformable inner container (4) to be filled with the product which is accommodated in the outer container and which likewise has a dispensing opening (5). The inner container is connected to the outer container both in the vicinity of the dispensing opening and at least at one location remote therefrom. The connection is formed in that the outer container has an opening (8) through which protrudes at least one fixing element (10) connected to the inner container. This fixing element is pin-like and has an end part of which the dimensions are larger than those of the opening. The invention further relates to a method for manufacturing such a container.
Abstract:
Dispensing devices can include buffers. This obviates the need for continually pumping the device to dispense spray or foam. A buffer can be spring loaded, spring loaded combination, elastomeric or gas, and can be in line or adjacent to a piston chamber. Such sprayers and foamers can be mounted upside down. With a buffer, a piston chamber can deliver a greater amount of liquid per unit time than can be dispensed through the nozzle(s). The fraction of liquid that cannot be dispensed can be sent to the buffer for dispensing after the piston downstroke has completed. Volume of the piston chamber and buffer, pressure response of the buffer, throughput of the nozzle, and the minimum opening pressure of the outlet valve can be arranged to restrict the outlet pressures of liquid droplets exiting the nozzle within a defined range.
Abstract:
A dispensing system includes a motor driven air pump having an air inlet and an air outlet, and a dispensing device. The dispensing device is releasably connected to the air pump. The dispensing device includes an air connector connected to the air outlet of the pump, a mixture outlet, a product inlet, and a product uptake system connected to the air connector, the mixture outlet, and the product inlet. The dispensing system includes a product container for a product to be dispensed. The product container is connected to the product inlet. The product container is integrated in the dispensing device. The product uptake system may include an ejector for sucking product from the container and/or a container air inlet for pressurizing the container.
Abstract:
FIG. 1 is an upper perspective view of a new design for a dispenser; FIG. 2 is a right side elevational view thereof; FIG. 3 is a left side elevational view thereof; FIG. 4 is a front elevational view thereof; FIG. 5 is a rear elevational view thereof; FIG. 6 is a top plan view thereof; and, FIG. 7 is a bottom plan view thereof. The broken lines shown illustrate portions of the dispenser that form no part of the claimed design.
Abstract:
FIG. 1 is an upper perspective view of a new design of a dispenser; FIG. 2 is a front elevational view thereof; FIG. 3 is a rear elevational view thereof; FIG. 4 is a left side elevational view thereof; FIG. 5 is a right side elevational view thereof; FIG. 6 is a top plan view thereof; and, FIG. 7 is a bottom plan view thereof. The broken lines in the drawings depict portions of the dispenser that form no part of the claimed design.