Abstract:
A lithographic projection apparatus is disclosed in which a space between the projection system and the substrate is filled with a liquid. An edge seal member at least partly surrounds the substrate or other object on a substrate table to prevent liquid loss when edge portions of the substrate or other object are, for example, imaged or illuminated.
Abstract:
A lithographic apparatus configured to project a patterned radiation beam onto a substrate. The apparatus includes a support configured to hold a patterned object, and a measurement system configured to detect orientations and/or densities of user area structures that are present on a user area of the patterned object.
Abstract:
A lithographic projection apparatus includes a support structure configured to hold a patterning device, the patterning device configured to pattern a beam of radiation according to a desired pattern; a projection system configured to project the patterned beam onto a target portion of a substrate; a substrate table configured to hold the substrate, the substrate table including a support surface configured to support an intermediary plate between the projection system and at least one of the substrate and an object positioned on the substrate table and not in contact with the at least one of the substrate and the object; and a liquid supply system configured to provide a liquid, through which the beam is to be projected, in a space between the projection system and the at least one of the substrate and the object.
Abstract:
A device manufacturing method includes bringing pressure within a vacuum chamber of a lithographic projection apparatus to a temperature stabilizing pressure range; keeping the pressure within the vacuum chamber within the temperature stabilizing pressure range for a period of time so as to stabilize the temperature in the vacuum chamber; decreasing the pressure within the vacuum chamber to a production pressure range; generating a beam of radiation with a radiation system; patterning the beam of radiation; and projecting the patterned beam of radiation through the vacuum chamber onto a target portion of a layer of radiation-sensitive material on a substrate.
Abstract:
A map of the surface of a substrate is generated at a measurement station. The substrate is then moved to where a space between a projection lens and the substrate is filled with a liquid. The substrate is then aligned using, for example, a transmission image sensor and, using the previous mapping, the substrate can be accurately exposed. Thus the mapping does not take place in a liquid environment.