Abstract:
The method of manufacturing a semiconductor device has the steps of: etching a semiconductor substrate to form an isolation trench by using as a mask a pattern including a first silicon nitride film and having a window; depositing a second silicon nitride film covering an inner surface of the isolation trench; forming a first silicon oxide film burying the isolation trench; etching and removing the first silicon oxide film in an upper region of the isolation trench; etching and removing the exposed second silicon nitride film; chemical-mechanical-polishing the second silicon oxide film; and etching and removing the exposed first silicon nitride film.
Abstract:
An apparatus structure and measurement method are provided to retain high precision and high reliability of a semiconductor mechanical quantity measuring apparatus which senses a mechanical quantity and transmits measured information wirelessly. As to a silicon substrate of the semiconductor mechanical quantity measuring apparatus, for example, a ratio of a substrate thickness to a substrate length along a measurement direction is set small, and a ratio of a substrate thickness to a substrate length along a direction perpendicular to the measurement direction is set small. The apparatus upper surface is covered with a protective member. It is possible to measure a strain along a particular direction and realize mechanical quantity measurement with less error and high precision. An impact resistance and environment resistance of the apparatus itself can be improved.
Abstract:
An apparatus structure and measurement method are provided to retain high precision and high reliability of a semiconductor mechanical quantity measuring apparatus which senses a mechanical quantity and transmits measured information wirelessly. As to a silicon substrate of the semiconductor mechanical quantity measuring apparatus, for example, a ratio of a substrate thickness to a substrate length along a measurement direction is set small, and a ratio of a substrate thickness to a substrate length along a direction perpendicular to the measurement direction is set small. The apparatus upper surface is covered with a protective member. It is possible to measure a strain along a particular direction and realize mechanical quantity measurement with less error and high precision. An impact resistance and environment resistance of the apparatus itself can be improved.
Abstract:
There is provided a semiconductor device having a device isolation region of STI structure formed on a silicon substrate so as to define a device region, wherein the device isolation region comprises a device isolation trench formed in the silicon substrate, and a device isolation insulation film filling the device isolation trench. At least a surface part of the device isolation insulation film is formed of an HF-resistant film.
Abstract:
A monitoring system for valve device according to the present invention comprises a semiconductor single crystalline substrate including a bridged circuit and the bridged circuit comprising impurity-diffused resistors. The semiconductor single crystalline substrate is mounted to any of a valve device's valve stem, valve yoke, drive shaft, or elastic body disposed at the end of the drive shaft. Thrust and torque of the valve device are measured by the semiconductor single crystalline substrate and then the measured values are used for monitoring the valve device.
Abstract:
It is an object to prevent breakage of a mechanical quantity measuring apparatus made of a monocrystalline silicon substrate due to a large distortion. A mounting board for measuring distortion is provided on a rear surface of a sensor chip made of a semiconductor monocrystalline substrate having a distortion detecting unit. Even when a large distortion occurs in an object to be measured, a distortion occurring in the semiconductor monocrystalline substrate can be controlled by the mounting board. Therefore, the semiconductor monocrystalline substrate is not broken, and a highly reliable mechanical quantity measuring apparatus can be provided.
Abstract:
A semiconductor mechanical quantity measuring apparatus in which the reverse surface of a strain-detecting semiconductor element is bonded to an object of measurement, and a member having a small elastic modulus is interposed between the wiring board for supporting the strain-detecting semiconductor element and the strain-detecting semiconductor element. It then becomes possible to reduce an undesirable effect that the rigidity and thermal deformation of the wiring board have on the strain-detecting semiconductor element, while supporting the strain-detecting semiconductor element.
Abstract:
A single crystal semiconductor including a Wheatstone bridge circuit formed of an impurity diffusion layer whose longitudinal direction is aligned with a particular crystal orientation is connected to a rotating body. A rotating body dynamic quantity measuring device and a system using the measuring device are fatigue- and corrosion-resistant because of the single crystal semiconductor used and are not easily affected by temperature variations because of the bridge circuit considering a single crystal anisotropy.
Abstract:
An apparatus structure and measurement method are provided to retain high precision and high reliability of a semiconductor mechanical quantity measuring apparatus which senses a mechanical quantity and transmits measured information wirelessly. As to a silicon substrate of the semiconductor mechanical quantity measuring apparatus, for example, a ratio of a substrate thickness to a substrate length along a measurement direction is set small, and a ratio of a substrate thickness to a substrate length along a direction perpendicular to the measurement direction is set small. The apparatus upper surface is covered with a protective member. It is possible to measure a strain along a particular direction and realize mechanical quantity measurement with less error and high precision. An impact resistance and environment resistance of the apparatus itself can be improved.
Abstract:
A reliable semiconductor device having a multilayer wiring structure formed of copper as a main component material, which constrains occurrence of voids caused by stress migration. In the multilayer wiring structure, a first insulation layer having a high barrier property and a compression stress, and making contact with the upper surface of a first wiring made of copper as a main component material, a second insulation film having a tensile stress, and a third insulation film having a dielectric constant which is lower than those of the first and second insulation film, are laminated one upon another in the mentioned order as viewed the bottom thereof, and a via hole is formed piercing through the first insulation film, the second insulation film and the third insulation film, making contact with the first wiring.