Abstract:
Glass microspheres and rear projection screens containing glass microspheres, which combine a desirable index of refraction (preferably, no greater than about 1.70) and low levels of defects (e.g., bubbles, visible haziness, frostiness, or opacity, substantially nonspherical shapes) upon formation are provided. Also provided is a coating method of placing microspheres on a film for use in a rear projection screen.
Abstract:
A beaded light dispersing film has a substrate layer, and an optically transparent layer, having a predetermined thickness, disposed over a side of the substrate layer. Optically transmitting beads are arranged to penetrate at least partially into the transparent layer to define clear apertures at interfaces between the beads and the transparent layer. The bead radius is greater than the predetermined thickness. An absorbing layer is disposed on the transparent layer, in interstices between the beads. A method of manufacturing the film includes disposing optically transparent beads partially in an optically transparent layer disposed over a transparent substrate layer. The optically transparent layer has a thickness less than half a diameter of a transparent bead. An absorbing layer overlies the optically transparent layer.
Abstract:
Rear projection screens include a film layer having a plurality of lenses for diverging light horizontally and vertically. The horizontal viewing angle created by the lenses may be different from the vertical viewing angle. The light may be directed by the lenses in a particular direction, so that the direction of the maximum intensity light does not lie parallel to an axis normal to the screen surface. The lens film may be combined with an isotropic light disperser, such as a bulk diffuser.
Abstract:
A thermal transfer donor element is provided which comprises a support, a light-to-heat conversion layer, an interlayer, and a thermal transfer layer. When the above donor element is brought into contact with a receptor and imagewise irradiated, an image is obtained which is free from contamination by the light-to-heat conversion layer. The construction and process of this invention is useful in making colored images including applications such as color proofs and color filter elements.
Abstract:
Glass microspheres and rear projection screens containing glass microspheres, which combine a desirable index of refraction (preferably, no greater than about 1.70) and low levels of defects (e.g., bubbles, visible haziness, frostiness, or opacity, substantially nonspherical shapes) upon formation are provided. Also provided is a coating method of placing microspheres on a film for use in a rear projection screen.
Abstract:
A thermal transfer donor element is provided which comprises a support, a light-to-heat conversion layer, an interlayer, and a thermal transfer layer. When the above donor element is brought into contact with a receptor and imagewise irradiated, an image is obtained which is free from contamination by the light-to-heat conversion layer. The construction and process of this invention is useful in making colored images including applications such as color proofs and color filter elements.
Abstract:
A method for the manufacture of a matrix on a substrate, said matrix being particularly useful in the formation of color filter elements, the process comprising the steps of:a) providing an imageable article comprising a substrate having on at least one surface thereof a black layer,b) directing energy of sufficient intensity at said black layer to transparentize black layer,c) said directing of energy being done so that black layer is removed in some areas, but is not removed in other areas so that borders of black layer surround areas from which black layer has been removed.A preferred method deposits colorant material within the open areas of the matrix by thermal transfer, e.g., laser induced thermal transfer, of colorant material to form a filter element.
Abstract:
A thermal mass transfer imaging process comprises the thermal mass transfer of a white or metallic donor layer which is then at least partially over-coated with a thermally transferred dye image.
Abstract:
A thermal mass transfer donor element comprising a carrier layer having on one surface thereof a mass transferable layer of thermoplastic organic polymeric binder and metal flakes, said metal flakes having an average ratio of length to thickness of greater than 20:1.
Abstract:
This invention relates to a laser imageable donor material that is capable of transferring pigment to a receiver, such as plain paper, polymeric film, metal and the like. The donor material is composed of at least a transparent film, an overlying layer of vapor coated black aluminum, and a dye coating or pigment coating dispersed on top of the black aluminum. A material which generates gas when irradiated may also be present as a separate layer under or in the dye or pigment layer and above the black aluminum layer. The construction can be addressed with diode lasers and diode-pumped solid state lasers.The invention can be used to produce large format digital halftone color proofs using high power air-cooled diode-pumped Nd:YAG and Nd:YLF lasers. Other materials could be transferred from the donor sheet in this process as well as the colorant (dye or pigment) layer.